• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Joint Calibration of a Cladding Oxidation and a Hydrogen Pick-up Model for Westinghouse Electric Sweden AB

Nyman, Joakim January 2020 (has links)
Knowledge regarding a nuclear power plants potential and limitations is of utmost importance when working in the nuclear field. One way to extend the knowledge is using fuel performance codes that to its best ability mimics the real-world phenomena. Fuel performance codes involve a system of interlinked and complex models to predict the thermo-mechanical behaviour of the fuel rods. These models use several different model parameters that can be imprecise and therefore the parameters need to be fitted/calibrated against measurement data. This thesis presents two methods to calibrate model parameters in the presence of unknown sources of uncertainty. The case where these methods have been tested are the oxidation and hydrogen pickup of the zirconium cladding around the fuel rods. Initially, training and testing data were sampled by using the Dakota software in combination with the nuclear simulation program TRANSURANUS so that a Gaussian process surrogate model could be built. The model parameters were then calibrated in a Bayesian way by a MCMC algorithm. Additionally, two models are presented to handle unknown sources of uncertainty that may arise from model inadequacies, nuisance parameters or hidden measurement errors, these are the Marginal likelihood optimization method and the Margin method. To calibrate the model parameters, data from two sources were used. One source that only had data regarding the oxide thickness but the data was extensive, and another that had both oxide data and hydrogen concentration data, but less data was available.  The model parameters were calibrated by the use of the presented methods. But an unforeseen non-linearity for the joint oxidation and hydrogen pick-up case when predicting the correlation of the model parameters made this result unreliable.

Page generated in 0.0615 seconds