• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PIV measurements of flow-field downstream of a cylinder with and without fairing and comparison with CFD

Stetson, Peter Burrows 08 October 2013 (has links)
This work examines the ability of two dimensional CFD models to predict the unsteady flow downstream of a cylinder, with and without fairing, in uniform flow. PIV measurements of the flow-field downstream of the cylinder and fairing in uniform flow are first presented. “Slices” of the flow at several locations along the cylinder are compared to show the variation of the flow in the cross-stream direction. Then the PIV flow is compared with RANS and LES simulations of the flow. Velocity time histories are compared and hydrodynamic coefficients are discussed. In a general sense, two dimensional CFD can give a functional approximation of the unsteady flow field downstream of the cylinder or fairing. / text
2

Reliability based design of marine risers

Cortes Romero, Juan Jose January 1999 (has links)
The harsh environment in which offshore structures must operate, their intended service life and the uncertainties inherent to the load processes, have been the impulse for investigation of their reliability. The method most extensively applied for this purpose during the last two decades was the Structural Systems Reliability, which can not be coupled with the finite element method. Therefore the objectives of the present work are to investigate the applicability of a technique which allows the utilization of the reliability analysis methods with a marine riser modelled by the finite element method, FEM, and revision of the reliability levels associated with this riser, including the fatigue life. For these purposes the response surface methodology was selected, among a number of methods. A response surface approach which requires a low number of experiments with the FEM model was elected, calculations for construction of the response surface are further simplified by the assumption of statistical independence among the basic variables. It is demonstrated in the present study that the response surface is capable of producing an equivalent and explicit limit state function which is used at a second stage with the First Order Reliability Method and the Adaptive Importance Sampling simulation technique. However, it was found that the assumption of independence is not always valid. In this case, a method is proposed in which the correlated variables are implicitly considered at the level of the mechanical model. The reliability of the marine riser was reviewed with the proposed algorithms, finding that the validity of the reliability levels depend on the number of basic variables considered and their statistical properties. The significant reduction in required computing time achieved with the response surface methodology allowed parametric studies to be carried out, in order to investigate the impact of different statistical properties of the basic variables. The fatigue reliability case was also investigated with the S-N approach. The introduction of uncertainty in the fatigue life estimation proved that acceptable levels of deterministic fatigue life may render unacceptablelevels of reliability. The uncertainty associated with the stress range is the most significant variable, though the present fatigue reliability formats consider it in a very simplified manner, therefore an approach is suggested with which the stress uncertainty can be considered in a more detailed fashion. However, the algorithm used here for construction of the response surface was unable to produce the required surface. Therefore it is concluded that though the response surface is capable of handling a large number of structural reliability cases, there are instances in which more research efforts are needed.
3

Dynamics and Nonlinear Interactions of Macro and Micro Structures: Inclined Marine Risers and MEMS Resonators

Alfosail, Feras 04 1900 (has links)
This work presents a combination of analytical and numerical approaches to gain an insight of the dynamics of marine risers and micro machined resonators. Despite their scale difference, we show that both systems share similarities in terms of initial static deformation, quadratic and cubic nonlinearities, and internal resonances. First, we utilize the state space method to study the eigenvalue problem of vertical riser. An orthonormalization step is introduced to recover the numerical scheme during numerical integration and we investigate the effect of applied tension, apparent weight, and higher-order modes on the accuracy of the scheme. We show that the method is advantageous to find eigenvalues and mode shapes of vertical risers in comparison to other methods. The work is extended to study the eigenvalue problem of inclined risers considering the influence of static deflection, self-weight and mid-plane stretching. The linear dynamics is solved using Galerkin method. The results demonstrate that under the influence of tension and configuration angle, the frequencies exhibit commensurate ratio with respect to the first natural frequency leading to the possible activation of internal resonances. Next, we study the nonlinear interactions of inclined risers considering two-to-one and three-to-one internal resonances under single and multifrequency excitations. The multiple times scale method is applied to study the nonlinear interaction and results are compared to those from a Galerkin solution showing good agreement. Time histories and perturbation’s response curves, in addition to the dynamical solution obtained by Galerkin and stability analysis using Floquet theory are utilized to examine the system. These results feature nonlinear energy exchange, saddle node jumps, and Hopf bifurcations leading to complex dynamic motion that can endanger the riser structure. Finally, the analysis using pertubation is extended to investigate the two-to-one internal resonance in micromachined arch beams between its first two symmetric modes. The response is analyzed using the perturbation method considering the nonlinear interaction and two simultaneous excitations at higher AC voltages. Good agreement is found among the results of pertubations, Galerkin and experimental data from fabricated Silicon arch beam. Different types of bifurcations are observed which can lead to quasi-periodic and potentially chaotic motions.

Page generated in 0.0622 seconds