• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics and Nonlinear Interactions of Macro and Micro Structures: Inclined Marine Risers and MEMS Resonators

Alfosail, Feras 04 1900 (has links)
This work presents a combination of analytical and numerical approaches to gain an insight of the dynamics of marine risers and micro machined resonators. Despite their scale difference, we show that both systems share similarities in terms of initial static deformation, quadratic and cubic nonlinearities, and internal resonances. First, we utilize the state space method to study the eigenvalue problem of vertical riser. An orthonormalization step is introduced to recover the numerical scheme during numerical integration and we investigate the effect of applied tension, apparent weight, and higher-order modes on the accuracy of the scheme. We show that the method is advantageous to find eigenvalues and mode shapes of vertical risers in comparison to other methods. The work is extended to study the eigenvalue problem of inclined risers considering the influence of static deflection, self-weight and mid-plane stretching. The linear dynamics is solved using Galerkin method. The results demonstrate that under the influence of tension and configuration angle, the frequencies exhibit commensurate ratio with respect to the first natural frequency leading to the possible activation of internal resonances. Next, we study the nonlinear interactions of inclined risers considering two-to-one and three-to-one internal resonances under single and multifrequency excitations. The multiple times scale method is applied to study the nonlinear interaction and results are compared to those from a Galerkin solution showing good agreement. Time histories and perturbation’s response curves, in addition to the dynamical solution obtained by Galerkin and stability analysis using Floquet theory are utilized to examine the system. These results feature nonlinear energy exchange, saddle node jumps, and Hopf bifurcations leading to complex dynamic motion that can endanger the riser structure. Finally, the analysis using pertubation is extended to investigate the two-to-one internal resonance in micromachined arch beams between its first two symmetric modes. The response is analyzed using the perturbation method considering the nonlinear interaction and two simultaneous excitations at higher AC voltages. Good agreement is found among the results of pertubations, Galerkin and experimental data from fabricated Silicon arch beam. Different types of bifurcations are observed which can lead to quasi-periodic and potentially chaotic motions.
2

A Theoretical and Experimental investigation of Nonlinear Vibrations of Buckled Beams

Lacarbonara, Walter 27 February 1997 (has links)
There is a need for reliable methods to determine approximate solutions of nonlinear continuous systems. Recently, it has been proved that finite-degree-of-freedom Galerkin-type discretization procedures applied to some distributed-parameter systems may fail to predict the correct dynamics. By contrast, direct procedures yield reliable approximate solutions. Starting from these results and extending some of these concepts and procedures, we compare the outcomes of these two approaches (the Galerkin discretization and the direct application of a reduction method to the original governing equations) with experimental results. The nonlinear planar vibrations of a buckled beam around its first buckling mode shape are investigated. Frequency-response curves characterizing single-mode responses of the beam under a primary resonance are generated using both approaches and contrasted with experimentally obtained frequency-response curves. It is shown that discretization leads to erroneous quantitative as well as qualitative results in certain ranges of the buckling level, whereas the direct approach predicts the correct dynamics of the system. / Master of Science
3

Contrôle actif et non-linéarités géométriques : le cas du gong xiaoluo / Active control and geometric non-linearities : the case of Gong Xiaoluo

Jossic, Marguerite 08 November 2017 (has links)
A l’interface de l’automatique, de la mécanique et de l’acoustique musicale, le contrôle des instruments de musique s’emploie à développer des méthodes permettant de contrôler, en temps réel, leur son acoustique. Les contrôleurs utilisés dans ce domaine s’appuient sur des modèles linéaires ne prenant pas en compte les non-linéarités présentes dans le comportement de certains instruments. Les gongs d’opéra chinois présentent ainsi plusieurs phénomènes induits par des non-linéarités géométriques, dont un très caractéristique glissement fréquentiel qui impacte plusieurs de leurs modes de vibration. Le présent travail propose d’initier la mise en place d’un contrôle de ces instruments par le biais de trois étapes consécutives. Dans un premier temps, les performances et limites du contrôle modal moderne vis-à-vis des phénomènes non linéaires présents dans le comportement de l’instrument (distorsion harmonique, glissement fréquentiel, résonances internes) sont étudiées et quantifiées. Les limitations mises en évidence précédemment motivent, dans un second temps, le développement d’un modèle d’ordre réduit décrivant le mode fondamental de l’instrument. Ce mode fondamental est caractérisé et identifié expérimentalement par une méthode récente utilisant une boucle à verrouillage de phase. Enfin, les limites de l’approximation uni-modale pour la description du mode fondamental de l’instrument en situation de jeu sont étudiées. L’interaction entre les résonances internes et le phénomène de glissement fréquentiel est démontrée en régime libre, ouvrant la voie vers le développement d’un modèle réduit pour décrire le comportement du mode fondamental du gong. / At a crossroads between automatics, mechanics and musical acoustics, active control of musical instruments aims at finding methods which would allow to control their acoustic sound in real time. Previous instrumental control studies never acknowledged nonlinear behaviours in musical instruments. However, Chinese opera gongs show various phenomena due to geometrical nonlinearities, among which a specific pitch glide, impacting several of its vibration modes. We propose to address the control of these instruments by reaching three consecutive steps. First, the performances and the limits of modern modal control regarding nonlinear phenomena in the behavior of the gong (harmonic distortion, internal resonances, pitch glide) are highlighted and quantified. The limitations of modal control suggests the development of a reduced order model describing the fundamental mode of the instrument. The nonlinear mode associated with the fundamental mode is characterized and identified experimentally by a method resorting to a Phase Locked Loop (PLL). Finally, the limits of the unimodal approximation describing the fundamental mode in playing condition are highlighted. The interaction between internal resonances and pitch glide phenomena is demonstrated experimentally in free vibration, allowing for the developing of a reduced order model to describe the fundamental mode of the instrument.
4

Analyse de structures vibrantes dotées de non-linéarités localisées à jeu à l'aide des modes non-linéaires / Analysis of vibrating structures with localized nonlinearities using nonlinear normal modes

Moussi, El hadi 17 December 2013 (has links)
Le travail de cette thèse a été réalisé dans le cadre d'une collaboration entre EDF R&D et le LMA de Marseille (CNRS). Le but était de développer des outils théoriques et numériques pour le calcul de modes non-linéaires de structures industrielles possédant des non-linéarités localisées à jeu. La méthode de calcul utilisée est une combinaison de la méthode d'équilibrage harmonique (EH) et de la méthode asymptotique numérique (MAN), appelée EHMAN. Elle est réputée pour sa robustesse sur les problèmes réguliers. L'enjeu de ce travail de thèse est de l'appliquer sur des problèmes non-réguliers régularisés de type butée à jeu pour lequel un grand nombre d'harmonique est nécessaire. Des améliorations ont été apportées à la méthode de base pour rendre effectif le traitement de modèles à "grand" nombre de degrés de liberté (DDL). Les développements réalisés pendant la thèse ont été capitalisés par la création de nouveaux opérateurs dans Code_Aster.Une étude approfondie d'un système à 2 degrés de liberté a permis de faire émerger quelques caractéristiques des systèmes non-linéaires à jeu. Celles-ci ont servi entre autre à établir une méthodologie pour l'étude de systèmes à grand nombre de DDL. Pour finir, la potentialité des modes non-linéaires comme outil de diagnostic vibratoire est démontrée avec l'étude d'un tube cintré de générateur de vapeur. Le calcul des modes non-linéaires a monté l'existence d'une interaction entre un mode hors-plan (basse fréquence) et un mode plan (haute fréquence) expliquant des régimes vibratoires non-standards. Ce résultat, impossible à obtenir avec les outils de l'analyse modale linéaire, est confirmé expérimentalement. / This work is a collaboration between EDF R&D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities.We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of nonsmooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code_Aster, an open-source finite element solver developed by EDF R&D.The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics.

Page generated in 0.091 seconds