• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • Tagged with
  • 22
  • 22
  • 22
  • 19
  • 14
  • 14
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phytoplankton studies in the KwaZulu-Natal Bight.

Omarjee, Aadila. January 2012 (has links)
The KwaZulu-Natal Bight is an important area along the South African east coast, stretching 160 km north from Scottsburgh to St Lucia (Lutjeharms et al., 2000). The Bight is of interest to the region as the area contains some distinct physical features, which are presumed to drive the ecological functioning of the shelf ecosystem through their role in nutrient sources. These include the Tugela River, the second largest river in South Africa in terms of outflow, and the Agulhas Current that forms an outer border at the edge of the continental shelf. Phytoplankton interacts with the majority of essential ecological networks and therefore greatly influences marine ecosystems. To this end, it is necessary to understand their ecophysiological rate processes – particularly those that are influenced by the dominant nutrient inputs to the Bight. The overall aim of this project is therefore to provide an insight into the sources of nutrients driving phytoplankton productivity in the Bight. Synoptic surveys were conducted to provide an indication of the distribution of Total Suspended Solids (TSS), Particulate Organic Matter (POM) and phytoplankton in the Bight, while focussed experiments used stable isotopes to examine the rate processes involving C and N acquisition, as well as sources of N available in the surface water. Concentration of particulate organic phosphorus and nitrogen were found to be higher in the wet season when compared to the dry season. During the wet season a large variation in chlorophyll-a fluorescence was observed across the Bight, while natural abundance isotope data indicated a seasonal change in the nutrient source available. For the wet season nutrient concentration varied with site and depth, however uptake rates (μg N.1ˉ¹.hˉ¹) measured using ¹⁵N tracer additions were not significantly different with site and depth. Alternatively, the dry season showed a significant difference between site in surface waters. In the wet season the mid shelf area had the highest uptake rate and phytoplankton biomass while the Richards Bay north site dominated, with regard to the previously mentioned factors, in the dry season. At the time of the experiments, neither the Durban eddy nor the upwelling cell were present, and hypotheses regarding the importance of these physical features in driving phytoplankton nutrient acquisition could not be assessed. However, a notable difference in uptake rate between the wet and dry seasons was observed, and this difference is likely due to the fluvial sources of nutrients from the Tugela and many other rivers entering the KZN coast, which are absent during the dry season. The results indicate that terrestrial nutrient sources play a major role in influencing nutrient concentrations on the Bight, and hence influence the nearshore ecosystem of the region. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2012.
12

Relationship between sediment structure and infaunal amphipod communities along the Durban outfalls region on the east coast of South Africa.

Arabi, Sumaiya. January 2010 (has links)
Increased human habitation brings associated pressures with it, such as the introduction of contaminants to coastal waters. The major sources of these occur along the KwaZulu-Natal coast via Sappi Saiccor discharge points, Tioxide, AECI, the Mlaas canal, Central Works Outfall and Southern Works Outfall. This study investigated the effects of sediment structure on benthic amphipod communities exposed to sewage and industrial waste from the Central Works and Southern Works Outfalls along the Durban coastline, and used a 4-year dataset of sediment grain size analysis, metal concentrations, Total Kjeldahl Nitrogen (TKN) and Chemical Oxygen Demand (COD) at impacted and reference sites. Results exhibited that the levels of effluent being discharged onto the Durban coast from the Southern Works and Central Works Outfalls do not accumulate in the fine grained sediments in sites where it would be expected. The Mdloti reference site which was dominated by coarse sediment showed the highest concentrations of metals. In addition, the outfalls do not have significant effects on the amphipod communities in the vicinity. Community structure between sites with similar grain sizes tends to be very similar thereby highlighting the possible influence of grain sizes on determining community patterns. Overall, there seemed to be no effect of pollutants on the biology or accumulation in the receiving environment. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2010.
13

Ecosystem modelling of the data-limited, oligotropic KwaZulu-Natal Bight, South Africa.

Ayers, Morag Jane. 08 November 2013 (has links)
Ecosystem modelling allows for an understanding of the structure and functioning of ecosystems. During this study, the oligotrophic KwaZulu-Natal (KZN) Bight, a data-limited system on the east coast of South Africa, was modelled. A framework for modelling data-poor systems, incorporating the construction of multiple models, sensitivity analyses and comparative analyses was applied to the Bight using literature data. Models converged on general trends of ecosystem functioning showing 99% of flows originated from detritus, primarily imported from rivers. The largest source of riverine detritus is the Thukela River which flows into the central Bight. This area supports a shallow-water prawn trawl fishery which targets penaeid prawns. Fisheries time series‘ were incorporated into the model framework to study the effects of prawn trawling and the decrease in prawn recruitment, caused by estuarine nursery loss, on the central Bight ecosystem. Dynamic simulations suggest the biomass of biotic groups were more affected by prawn recruitment level than trawling effort level. To understand the importance of nutrients in more detail, nutrient content, biomass and stoichiometric ratios were documented for various pelagic and demersal functional groups, and compared between areas in this oligotrophic system. Results showed the central Bight had the highest carbon, nitrogen and phosphorus biomasses, due to riverine nutrient sources, and the southern Bight had the lowest. In addition, the demersal community had higher biomasses than the pelagic community for all nutrients. Nutrient dynamics and limitations within the Bight were explored through the construction and analysis of trophic flow networks of carbon, nitrogen and phosphorus for the southern, central and northern Bight. Network analyses suggest nutrient cycling was lowest in the central Bight, and highest in the southern Bight. Cycling of nitrogen was highest in all areas due to the dominance of benthos, in terms of biomass, which was nitrogen-limited. Higher trophic levels were found to be phosphorus-limited. However many pelagic groups were co-limited by nitrogen and phosphorus, probably due to the oligotrophic nature of the bight. This suite of ecosystem models provides the first holistic view of the KZN Bight and an understanding of ecosystem functioning in the southern, central and northern Bight. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.
14

The zooplankton of temporarily open/closed estuaries : case studies of the Mdloti and the Mhlanga estuaries, KwaZulu-Natal North Coast.

Thwala, Xolani Christopher. January 2005 (has links)
The zooplankton communities of the Mdloti and Mhlanga estuaries were studied over a 13-month period (March 2002-March 2003). Monthly daytime samples were collected from both estuaries at the lower, middle and upper reaches using a WP-2 net and a hyperbenthic sled. Throughout the study period, the Mdloti Estuary experienced nine breachings, while the Mhlanga experienced 16 such events. Significant differences in zooplankton abundance were observed between the two estuaries (F I, 73 = 5.2; P<0.05), with the Mdloti consistently exhibiting higher values than the Mhlanga. No significant differences were, however, observed in zooplankton biomass between the two estuaries (U = 634; P>0.05). At the Mdloti, zooplankton abundance ranged from 20 ind.m-3 to 5.4 x 106 ind.m-3 , while at the Mhlanga this ranged from 76 ind.m-3 to 2.0 x 105 ind.m-3 • Zooplankton biomass ranged from 0.08 mg.m-3 (OW) to 2010 mg.m-3 (OW) at the Mdloti, and from 0.18 mg.m-3 (OW) to 1210 mg.m-3 (OW) at the Mhlanga. A one-way ANOV A revealed significant differences in zooplankton abundance between the open and the closed phase, both at the Mdloti (FI, 30 = 59; P<0.05) 'and the Mhlanga (FI, 38 = 7.3; P<0.05), with the closed phase exhibiting consistently higher values than the open. Similarly, biomass was significantly higher during the closed than the open phase, both at the Mdloti (U= 16.5; P<O.OI) and the Mhlanga (U= 88, P<O.O 1). This pattern may be attributed to the stability achieved by these systems during periods of mouth closure, when the estuaries exhibit less freshwater input and a restricted exchange of water with the sea. At the Mdloti, zooplankton biomass (OW) was positively correlated to both phytoplankton (r= 0.36) and microphytobenthos biomass (r = 0.41). At the Mhlanga, zooplankton biomass (OW) was only positively correlated to phytoplankton biomass (r = 0.45) The most abundant taxa at the Mdloti during the open phase were Pseudodiaptomus hessei and copepod nauplii, each contributing 38% and 32% of the total stock, respectively. During the closed phase, however, rotifers were by far the dominant taxon, contributing 82% of the total zooplankton abundance. These were followed by cope pod nauplii with 16%. At the Mhlanga, the most abundant groups during the open phase were again the copepod nauplii (89%) and P. hessei (7 %), while the closed phase was dominated mainly by caridean larvae (39%) and copepod nauplii (26%). The dominance of P. hessei during the open phase of both estuaries may be attributed to the pioneering nature of this species. The dominance of rotifers at the Mdloti during the closed phase may have been due to the freshwater conditions that prevailed in this estuary as a result of prolonged mouth closure. The concentration of copepod nauplii increased dramatically 2-4 weeks after major rain events, possibly due to the hatching of dormant eggs in response to freshwater pulses. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2005.
15

The vegetation ecology of the lower Mkuze river floodplain, Northern KwaZulu-Natal : a landscape ecology perspective.

Neal, Marian J. January 2001 (has links)
The overall aim of this study was to develop an understanding of the vegetation ecology of the lower Mkuze River floodplain from a landscape ecology perspective. The lower Mkuze River floodplain and its associated wetlands are located east of the Lebombo Mountains and north of Lake St. Lucia on the Maputaland Coastal Plain in northern KwaZulu-Natal. This system is defined as a storage floodplain wetland and comprises a mosaic of different wetland types. In addition it has a complex history of resource use and management. Landscape ecology proved to be an ideal theoretical framework for this study because it enables the examination of complex ecological processes and phenomena in an integrated and holistic manner. It achieves this by explicitly recognizing the spatial heterogeneity, dynamics and hierarchical organization of the landscape; concepts that proved useful in developing an understanding of the ecological patterns and processes operating within the lower Mkuze River floodplain. The vegetation of the study area was classified, using multivariate techniques, into six plant communities. The distribution of these plant communities was correlated with underlying environmental gradients that summarized the interactions between hydrology, substrate properties and topography within the floodplain system. Within the study area the Phragmites mauritianus reed swamp community was found where there was slow moving water, in semi- to permanently saturated soil. This was usually around the edges of pans or in extensive stands in low-lying areas in the distal reaches of the floodplain. The Imperata cylindrica hygrophilous grassland community was uncommon and was found in isolated stands towards the edge of the region of seasonal flooding. The Echinochloa pyramidalis backswamp community was the most extensive of all the plant communities identified. This community was tolerant of flooding and was found in damp places such as seasonal pans, backswamps and riverbanks as well as in standing water. The distribution of the Ficus sycomorus riparian forest community was restricted to elevated levees adjacent to the river channel that experienced inundation when floods were large enough to overtop channel banks. The Cynodon dactylon floodplain community was generally found towards the floodplain-terrestrial upland boundary in elevated areas with sandy well-drained soils. The Acacia xanthophloea woodland community was distributed on the floodplain margin in elevated areas on sandy soils, primarily fringing the linear pans draining towards the Mkuze River from the north. The description of the plant community types and the underlying environmental determinants of their distribution provided a useful foundation for the examination of ecological processes and phenomena operating at spatially coarser levels within the landscape hierarchy. Plant communities were aggregated into functional types based on criteria such as exposure to similar flooding and sedimentation regimes. The identification and mapping of these functional types, using a Geographical Information System (GIS), enabled one to identify a hydrogeomorphic continuum that described the interaction between floodplain processes and vegetation distribution. Within the study area the proximal-seasonally inundated functional type comprised plant community types found on channel levees and within backswamp areas. These areas were functionally connected to the Mkuze River in that they were exposed to seasonal flood events and associated sedimentation. The distal-permanently inundated functional type was typically found in the lower reaches of the floodplain that were rarely exposed to hydrological and sedimentological inputs from the Mkuze River. This functional type was permanently inundated and characterized by standing water and/or permanently saturated soils that were generally associated with the large floodplain pans. The distal-infrequently inundated functional type was typically located in sandy areas along the southern distal reaches of the floodplain. These areas were infrequently inundated by overbank floodwaters from the Mkuze River and were not characterized by substantial clastic sedimentation. The distribution and interaction between these functional types made it possible to develop process-based understanding of the ecosystem patterns and processes operating within the lower Mkuze River floodplain. Landscape ecology theory emphasises the importance of a temporal analysis of spatial heterogeneity and the role of disturbance in ecosystem patterns and processes. Therefore a temporal analysis of the landscape mosaic from 1937 to 1996 was undertaken, using a GIS, in order to quantify landscape change over time. The landscape characteristics utilised to examine this change were total category area, percentage contribution to the total landscape area, number of patches, mean patch size, median patch size, patch size standard deviation and the mean perimeter-area ratio. These spatial statistics were calculated for each year using PATCH ANALYST, an ArcView GIS extension and they were used to illustrate the role of anthropogenic disturbance on the landscape mosaic at a variety of levels within the landscape hierarchy. Anthropogenic disturbance was found to affect landscape content and configuration and therefore had the potential to undermine the underlying environmental determinants of landscape patterns and processes. Once the underlying functional processes are undermined, irreversible ecosystem degradation is a possible outcome. The examination of the different levels within the landscape hierarchy and the dynamics of ecosystem patterns and processes operating within the Mkuze River floodplain made it possible to develop deeper insights into ecosystem patterns and processes than a conventional vegetation ecology study that typically focuses primarily on plant community classification. The use of landscape ecology as an overarching theory that guided the research process and aided the interpretation of findings by explicitly recognising the importance of examining spatial heterogeneity, hierarchical organisation and dynamics, proved invaluable in developing process-based understanding of the lower Mkuze River floodplain. / Thesis (M.Sc.)-University of Natal, Durban, 2001.
16

Marine nutrient dynamics of the KwaZulu-Natal bight : assessing bacterial numbers, biomass and productivity.

Kunnen, Travis Hank. 07 November 2013 (has links)
The KwaZulu‒Natal Bight is formed from a narrow indentation in the SE coast of South Africa with the waters within considered to be oligotrophic. These waters therefore depend on both allochthonous sources of nutrients such as intermittent upwelling of deeper water and nutrients supplied by riverine inputs, as well as the autochthonous nutrients supplied by phytoplankton production, microbial fixation and recycling of nutrients by the microbial loop. Two African Coelacanth Ecosystem Programme cruises were undertaken during 2010, during the wet summer, and dry winter months. During each cruise, the waters of the KZN‒B were sampled rapidly to provide spatial scales (synoptic) of bacterial abundance and biomass, as well as at four predetermined locations to determine temporal scales (focus) of bacterial abundance, biomass and productivity. During the synoptic section, samples were taken in surface waters, close to F‒max (the depth at which phytoplankton were at their most dense as determined by in situ fluorometry), below the F‒max (where depths exceeded 50 m), and near the bottom. These samples were fixed with formaldehyde, stained with DAPI and cells were visualised by epifluorescent microscopy. During the focus section, samples were taken in surface waters, close to F‒max and below F‒max and incubated with 3H‒Thymidine to determine bacterial productivity. Bacterioplankton dynamics (numbers, biomass and productivity) for both cruises, synoptic section, were higher within the photic zone and near riverine influenced waters, with summer showing higher dynamics than winter. Irrespective of season, bacterioplankton dynamics decreased with increasing distance from the coast as well as with increasing depth, potentially via bottom‒up control mechanisms. Results obtained from the focus section of both cruises showed a significant difference between seasons for the Thukela Mouth and Richards Bay North, while no difference at the Durban Eddy. These results from the focus section suggest that bacterioplankton temporal dynamics were more top‒down controlled, rather than environmentally influenced, resulting in fluctuating dynamics over time. Overall, it is proposed that the degree of inorganic nutrient supply to the phytoplankton, resulted in the formation of DOM for use by the heterotrophic bacteria, resulting in a bottom‒up control mechanism, where Chl‒a concentrations within the euphotic zone induces either top‒down or bottom‒up control mechanisms on the heterotrophic bacteria directly affecting their numbers, biomass and productivity. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2013.
17

The dynamics of microphytobenthos in the Mdloti and Mhlanga estuaries, Kwazulu-Natal.

Iyer, Kogilam. January 2004 (has links)
Microphytobenthos (MPB) generally dominates total autotrophic biomass in temporarily open/closed estuaries (TOCEs) of South Africa. A comparative study of MPB biomass was undertaken in two KwaZulu-Natal TOCEs, the Mdloti and the Mhlanga. Both estuaries receive different volumes of treated sewage waters. The Mdloti receives 8 ML.d-1, while the Mhlanga receives 20 ML.d-1, resulting in a capping flow of 0.092 and 0.23 m3.s-1, respectively. Through these effluents, eutrophication is enhanced and periods of mouth opening are also increased and prolonged, particularly at the Mhlanga. The aim of this study was to investigate fluctuations in MPB biomass in the Mdloti and the Mhlanga systems, with emphasis on freshwater flow and the alternation of closed and open phases. Sediment samples for MPB biomass were collected on a monthly basis, between March 2002 and March 2003, in the lower (mouth), middle, and upper (head) reaches of the two estuaries. MPB biomass ranged from 1.33 to 391 mg chI a m-2 and from 1.7 to 313 mg chI a m-2 in the Mdloti and the Mhlanga, respectively. A I-way ANOVA revealed no significant differences in MPB chI a concentrations between the two estuaries for the entire data set (Fl, 76 =1.48, P > 0.05). At the Mdloti, MPB biomass varied considerably, with values ranging from 1.33 to 131 mg chI a m-2 during the open phase, and from 18 to 391 mg chI a m-2 during the closed phase. A Mann-Whitney U test confirmed the high significance of these differences between open and closed phases (U= 29, P < 0.001). At the Mhlanga, MPB biomass ranged from 7.0 to 313 mg chI a m-2 during the open phase, and from 1.7 to 267 mg chI a m-2 during the closed phase. Unlike what was observed at the Mdloti, the higher MPB values at the Mhlanga were not always associated with the closed mouth state. In relation to key physico-chemical and biological factors, grazing pressure exerted by the zooplankton community appeared to have played a major role in controlling MPB biomass. Zooplankton biomass was consistently and positively correlated to MPB biomass throughout the study period both at the Mdloti (r = 0040, P < 0.001) and at the Mhlanga (r = 0.33, p < 0.05). Unlike what was shown in previous studies, light attenuation was not significantly correlated with MPB biomass during the period ofthe study, either at the Mdloti or the Mhlanga. These results show that the opening and closing of the mouth play a key role on the MPB biomass of both estuaries. The Mdloti seems to function as a typical TOCE, with prolonged open and closed phases. The Mhlanga, on the other hand, lacks a prolonged closed phase. This, in turn, affects its entire trophic structure and functioning. / Thesis (M.Sc.)-University of KwaZulu- Natal, 2004.
18

Transboundary water resource management of the Pongolo River/Rio Maputo.

Tompkins, Robyn. January 2002 (has links)
In the Twenty-first Century, sustainable water management is likely to be humanity's greatest challenge in a world of ever-increasing demand. Legal instruments both international and national regulate and provide a general framework for the use and management of international waters. Future basin management agreements can be informed by examining the degree of success, in terms of sustainability and equity, achieved by such agreements. That success can be influenced by the degree to which such agreements support the human right to water implicitly stated in international customary law, through a collaborative management approach. Since 1988, attempts by communities on the Pongolo floodplain to be involved in Pongolopoort Dam releases, have met with little success. Recently, the Department of Water Affairs and Forestry has begun to support those efforts, but the approach remains a sectoral one, and is primarily concerned with water issues. The South African National Water Act 36 of 1998 provides for environmental management and public participation, as well as providing explicitly for the rights of individual water users, but its implementation is hampered by an overwhelming emphasis on technical considerations and a lack of political will to embrace collaborative management systems. Little effort is expended on collaborative management methods, though the level of transparency in water management is improving, despite remaining highly centralised. The level and extent of incentives for local community participation is low, and systematic monitoring is in its early development. International river basin agreements generally take a top-down or state-driven approach, though there are some examples where local cross-border communities have participated successfully in the implementation of international agreements and management of transboundary basins. South Africa, Swaziland and M09ambique signed the Interim Incomaputo Agreement, which includes the Maputo basin, in August 2002. Once again, the approach to this agreement has been highly sectoral in that negotiations were handled entirely by water officials in the relevant countries. A lack of transparency has prevailed in the negotiation stages, though through the basin studies, which will inform implementation plans, the level of participation should improve. There is overwhelming consensus that integrated management is the key to sustainable international river basin management. Formal and systematic methods for inter-departmental communication, both nationally and internationally are currently not being implemented, which has significant negative impacts on integrated management. Research in this area represents an opportunity to explore collaborative management of an international river basin in an area that is, as yet, unstressed in terms of population and water supply. / Thesis (M.Env.Dev.)-University of Natal, Pietermaritzburg, 2002.
19

Modelling streamflow and sediment yield on the lower Mgeni catchment.

Singh, Michael Lutchman. January 2001 (has links)
This study involves the application of the ACRU Agrohydrological Model to a selected study catchment in the Lower Mgeni Catchment, and its discretized subcatchments, immediately downstream of the Inanda Dam. This study was initiated on the assumption that the Inanda Dam, which came into operation in 1989, would have significant impacts on the downstream (Lower Mgeni) hydrology, geomorphology and ecology. The overall aim of this study, to set up and run the ACRU model for the delimited study catchment, was successfully accomplished. This aspect of the study involved firstly, the setting up of an input database for each distributed catchment within the catchment; secondly, the processes and techniques used to translate data into hydrological information; and finally the "running" of the hydrological model, which in turn "drives" the system and simulates the catchment hydrology. Specific objectives of the study entailed the simulation of hydrology, which focussed on simulated runoff and streamflow; and sediment yield responses of the subcatchments and the total study catchment of the Lower Mgeni, with respect to gross volumes and sediment yield rates produced. The streamflow results reported indicated a season of "Iow" flow, with a monthly flowrate ranging from 1155m3s-1 to 2735m3s-1 , from April to September; and is identified and distinguished from the period of "high" flowrate, ranging from approximately 483m3s-1 to 1747m3s-1 , for the remaining months of the year. The mean annual volume for the delimited subcatchment is 22 278.5 million m3 , exceeding the annual volume required to maintain riverine and estuarine ecology, which according to DWAF (1990) is 18.5 million m3 . The simulated results of sediment yield indicate that Subcatchment 3 and 4 have the lowest sediment yield rates of 32.3 t km-2 a-1 and 32.6 t km-2 a-1 , respectively. Subcatchment 2 has the highest yield rate at the value of 617 t km-2 a-1 , while subcatchment 1 has a rate of 53.2 t km-2 a-1 . Annual sediment production in the Lower Mgeni subcatchment is 10 855.1 tons per annum with respect to gross mass, resulting in a sediment yield rate of 73.8 t km-2 a-1 . The outcomes of this study compare very favourably with other studies conducted on hydrology and sediment yield, especially those undertaken within this geographical area. It may be assumed therefore, that the results produced herein can be applied with confidence to enable appropriate planning and management of resources within this catchment. Modelling of hydrology in the Lower Mgeni is expected to contribute significantly towards meeting riverine and estuarine ecological and geomorphological streamflow requirements. It would facilitate the development of an appropriate management and dam release strategy of Inanda Dam, in order to meet these requirements. The modelling of sediment yield is expected to contribute to the development of a sustainable sandwinning policy and strategy for the Lower Mgeni, as current extraction rates exceed the annual sediment production. Once the model has been applied to a selected catchment, it has the ability to consider different scenarios, providing an invaluable tool for planning. Based on the results of this study, the ACRU model may be applied, with confidence, to other similar ungauged catchments. / Thesis (M.Sc.)-University of Natal, Durban, 2001.
20

A retrospective assessment of the Port Alfred linefishery with respect to the changes in the South African fisheries management environment

Donovan, Bruce 18 July 2013 (has links)
Since the study on the Port Alfred/Kenton-on-Sea/Boknes linefishery by Hecht and Tilney (1989) there have been substantive changes to the linefish management environment in South Africa. Using the Port Alfred linefishery as a model, the aim of this study was to evaluate the effectiveness of the linefish management regulations that were implemented by Marine and Coastal Management (MCM) since 1992, and to assess the behaviour and 'status' of the fishery in response to these changes. Changes to both the licensing structure and catch regulations have had a significant effect on the functioning of many aspects of the Port Alfred linefishery (fishing effort, catch composition, cpue) as well as on the structure of the fishery and its socio-economic profile. Overall commercial cpue decreased from 1985 to 1998. Since 1998 there has been a significant increase in cpue (from 2.3 Kg.fisher⁻¹ hour⁻¹ to a peak of 4.8 Kg.fisher⁻¹.hour⁻¹ in 2005. This was attributed to good catches of geelbek, particularly in 2005, 2007 and 2008 (during these years geelbek contributed an average of 35% to the total landings in comparison to a mean contribution of II % between 1985 and 2004). However, size spectra analysis suggests that the increase in overall cpue since 1998 misrepresents the actual status of the fishery. If geelbek is excluded from the analysis on the grounds that it is the only species in the fishery that is highly migratory, susceptible to recruitment fluctuations and it does not contribute to the catches on a year round basis, then the results suggest that the fishery is still in a declining phase despite the 80% reduction in commercial effort and numerous stricter catch regulations (e.g. size/bag limits). Furthermore, the cpue of silver kob, which has been the "mainstay" species of the fishery, has consistently declined over the last 23 year period (from 1.69 Kg.fisher⁻1 .hour1 in 1986 to 0.86 Kg.fisher⁻1.hour⁻1in 2007). The substantial reduction in commercial effort in the fishery from 33 vessels in 2001 to 13 in 2002 resulted in a shift from commercial to recreational fishing. The number of active commercial vessels in Port Alfred alone decreased from 29 in 1989 (Hecht 1993) to four in 2008. During the same timeframe, the number of regularly active recreational vessels had almost doubled (16 in 1989 to 26 in 2008). Despite the greater number of recreational boats in the fishery they only landed approximately half the average yearly tonnage of the commercial vessels (21,5 and 44,7 tonnes,annum-I , respectively) between 2006 and 2008, This was ascribed to the differences in catch regulations for the two sectors, Furthermore, it was speculated that increasing operating costs and narrowing profit margins have contributed to lower levels of compliance in both the commercial and recreational sectors since 2006, For example, 16% of silver kob landed during 2006-08 were under the minimum size, Despite the changes made to the regulations since 1998 and the 60,6% reduction In legislated commercial effort in the fishery between 2001 and 2002 it was concluded that the fishery has continued to decline, Except for the good recruitment of geelbek (which may be due to regulatory changes made in 1992) the changes in the management environment have had no measurable positive effect on this fishery, It is recommended that commercial effort should not be allowed to increase beyond the current number of active boats, that there should be an area restriction on all commerciallinefish vessels, that the current recreational bag limit for silver kob should be re-assessed, there should also be a concerted and nationally funded effort to educate recreational anglers about the merits of catch and release, and the frequency of catch inspections of both sectors should be increased, / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in

Page generated in 0.4794 seconds