• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diversity and similarity of benthic fauna off Oregon

Stander, Jeffrey M. 15 August 1969 (has links)
Samples of benthic organisms off the coast of Oregon, taken from depths varying from 50 to 2900 meters, have been analyzed in terms of diversity at a given station, and similarity and ecological distance to other stations. Estimates of epifauna abundance were also made. In the analysis an important distinction is made between diversity, abundance, and variety indices; the three measures are considered independent pieces of information relevant to the ecological structure of the population of interest. Two types of sampling gear were used. Large epifauna were sampled with a beam trawl. Polychaetous infauna were sampled with an anchor-box dredge. The diversity index chosen is Simpson's index; the measures of similarity and ecological distance are related. These measures are preferred because of their ease in calculation and basic simplicity. In addition these measures may be interpreted as estimates of well-defined population parameters (as Simpson has pointed out) which have straightforward probabilistic interpretation. A valid measure of diversity is one piece of relevant information necessary for elucidating the sufficient parameters of ecological systems. Therefore the methodology presented has broad application to studies of population structure. / Graduation date: 1970
2

The distribution and partitioning of dissolved organic matter off the Oregon Coast : a first look

Hill, Jon K. 20 May 1999 (has links)
The purpose of this thesis is to provide a first look at the spatial and temporal distributions of dissolved organic material (DOM) off the Oregon coast of North America. While this paper is not a comprehensive examination of these distributions, several patterns are identified as promising candidates for continued research. Most of the data presented was acquired during a strong El Nino event. The DOM data is presented as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) and is accompanied by temperature, salinity, nitrate plus nitrite (N+N), ammonium, silicate, chlorophyll, total organic carbon (TOC), particulate organic carbon (POC), total nitrogen (TN), total organic nitrogen (TON), and zooplankton biomass measurements. During July 1997, we examined the distribution of DOM in the surface waters off the Oregon and Southern Washington coasts. Eleven east-west transects were sampled from nearshore waters to 190km offshore. DOC concentrations as high as 180 iM were observed in the Columbia River plume. Patterns in the DOC distribution were also associated with upwelling regions, an offshore coastal jet, and an oligotrophic water mass in the northern portion of our study area. Beginning with the July 1997 study and continuing until July 1998, samples were collected on weekly and seasonal time scales at station NH-05, located 9km offshore from Newport, Oregon. Various problems have limited our seasonal comparisons, but we were able to collect high quality data depicting the changes in organic matter partitioning during a phytoplankton bloom and its decline during a two month period from mid-July through mid-September in 1997. During the bloom, POC increased dramatically, but DOC decreased. Possible explanations for this decrease and for changes in the C/N ratio of the DOM during the bloom are explored. Suggestions for future research are presented in the final chapter. / Graduation date: 2000
3

Sea urchin-kelp forest communities in marine reserves and areas of exploitation : community interactions, populations, and metapopulation analyses

Moctezuma, Gabriela Monta��o 20 December 2001 (has links)
Marine ecosystems can be exposed to natural and anthropogenic disturbances that can lead to ecological failures. Marine reserves have been lately suggested to protect marine populations and communities that have been affected by habitat destruction and harvest. This research evaluates the potential role of two marine reserves established in Oregon in 1967 (Whale Cove) and 1993 (Gregory Point). The red sea urchin (Strongylocentrotus franciscanus) was selected as indicator of population recovery since it is the only species that is commercially harvested. Changes in density, biomass, average size, size structure, growth and mortality rates were evaluated through time to assess population recovery. These parameters were also compared between reserves and adjacent exploited areas to evaluate the effect of exploitation. Results from Whale Cove (old reserve) indicate that the population in this area is fully recovered. On the contrary, the population in Gregory Point (new reserve) showed signs of recovery after six years of being protected. The importance of red urchins as source populations to provide larvae to adjacent areas was explored by the analysis of drifter's trajectories. Both reserves might be connected in a network where larvae produced in Whale Cove will provide recruits to Gregory Point and adjacent exploited areas, as well as populations in northern California. Gregory Point releases larvae that become recruits for Whale Cove only when spawning takes place in winter, otherwise larvae travel to central California. No clear trends were found in growth and mortality rates between reserves and non-reserves; differences were more related with food availability, competitors, and age specific mortality. We applied qualitative simulations to characterize and differentiate the community network inside reserves and exploited areas. Results suggest that communities from a particular site can be represented by a set of alternative models with consistent species interactions. Differences in predator-prey interactions as well as non-predatory relationships (interference competition, mutualism, amensalism) were found among sites. Each set of models represents a hypothesis of community organization that agreed with natural history information. Alternative models suggest that kelp forest communities are dynamic and can shift from one network configuration to another providing a buffer against a variable environment. / Graduation date: 2002

Page generated in 0.0545 seconds