• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 18
  • 16
  • 15
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Software framework for prognostic health monitoring of ocean-based power generation

Unknown Date (has links)
On August 5, 2010 the U.S. Department of Energy (DOE) has designated the Center for Ocean Energy Technology (COET) at Florida Atlantic University (FAU) as a national center for ocean energy research and development of prototypes for open-ocean power generation. Maintenance on ocean-based machinery can be very costly. To avoid unnecessary maintenance it is necessary to monitor the condition of each machine in order to predict problems. This kind of prognostic health monitoring (PHM) requires a condition-based maintenance (CBM) system that supports diagnostic and prognostic analysis of large amounts of data. Research in this field led to the creation of ISO13374 and the development of a standard open-architecture for machine condition monitoring. This thesis explores an implementation of such a system for ocean-based machinery using this framework and current open-standard technologies. / by Mark Bowren. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
2

Detection, localization, and identification of bearings with raceway defect for a dynamometer using high frequency modal analysis of vibration across an array of accelerometers

Unknown Date (has links)
This thesis describes a method to detect, localize and identify a faulty bearing in a rotating machine using narrow band envelope analysis across an array of accelerometers. This technique is developed as part of the machine monitoring system of an ocean turbine. A rudimentary mathematical model is introduced to provide an understanding of the physics governing the vibrations caused by a bearing with a raceway defect. This method is then used to detect a faulty bearing in two setups : on a lathe and in a dynamometer. / by Nicholas Waters. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
3

Data gateway for prognostic health monitoring of ocean-based power generation

Unknown Date (has links)
On August 5, 2010 the U.S. Department of Energy (DOE) has designated the Center for Ocean Energy Technology (COET) at Florida Atlantic University (FAU) as a national center for ocean energy research and development. Their focus is the research and development of open-ocean current systems and associated infrastructure needed to development and testing prototypes. The generation of power is achieved by using a specialized electric generator with a rotor called a turbine. As with all machines, the turbines will need maintenance and replacement as they near the end of their lifecycle. This prognostic health monitoring (PHM) requires data to be collected, stored, and analyzed in order to maximize the lifespan, reduce downtime and predict when failure is eminent. This thesis explores the use of a data gateway which will separate high level software with low level hardware including sensors and actuators. The gateway will v standardize and store the data collected from various sensors with different speeds, formats, and interfaces allowing an easy and uniform transition to a database system for analysis. / by Joseph. Gundel. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
4

Numerical simulation and prediction of loads in marine current turbine full-scale rotor blades

Unknown Date (has links)
Marine current turbines are submerged structures and subjected to loading conditions from both the currents and wave effects. The associated phenomena posed significant challenge to the analyses of the loading response of the rotor blades and practical limitations in terms of device location and operational envelopes. The effect of waves on marine current turbines can contribute to the change of flow field and pressure field around the rotor and hence changes the fluid forces on the rotor. However, the effect of the waves on the rotor depends on the magnitude and direction of flow velocity that is induced by the waves. An analysis is presented for predicting the torque, thrust, and bending moments resulting from the wave-current interactions at the root of rotor blades in a horizontal axis marine current turbine using the blade element-momentum (BEM) theory combined with linear wave theory. Parametric studies are carried out to better understand the influence of important parameters , which include wave height, wave frequency, and tip-speed ratio on the performance of the rotor. The periodic loading on the blade due to the steady spatial variation of current speeds over the rotor swept area is determined by a limited number of parameters, including Reynolds number, lift and drag coefficients, thrust and torque coefficients, and power coefficient. The results established that the BEM theory combined with linear wave theory can be used to analyze the wavecurrent interactions in full-scale marine current turbine. The power and thrust coefficients can be analyzed effectively using the numerical BEM theory in conjunction with corrections to the tip loss coefficient and 3D effects. / It has been found both thrust and torque increase as the current speed increases, and in longer waves the torque is relatively sensitive to the variation of wave height. Both in-plane and out-of-plane bending moments fluctuate significantly and can be predicted by linear wave theory with blade element-momentum theory. / by Junior Senat. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
5

Development of an integrated computational tool for design and analysis of composite turbine blades under ocean current loading

Unknown Date (has links)
A computational tool has been developed by integrating National Renewable Energy Laboratory (NREL) codes, Sandia National Laboratories' NuMAD, and ANSYS to investigate a horizontal axis composite ocean current turbine. The study focused on the design, analysis, and life prediction of composite blade considering random ocean current, cyclic rotation, and hurricane-driven ocean current. A structural model for a horizontal axis FAU research OCT blade was developed. Following NREL codes were used: PreCom, BModes, ModeShape, AeroDyn and FAST. PreComp was used to compute section properties of the OCT blade. BModes and ModeShape calculated the mode shapes of the blade. Hydrodynamic loading on the OCT blade was calculated by modifying the inputs to AeroDyn and FAST. These codes were then used to obtain the dynamic response of the blade, including blade tip displacement, normal force (FN) and tangential force (FT), flap and edge bending moment distribution with respect to blade rotation. / by Fang Zhou. / Thesis (Ph.D.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
6

Numerical performance prediction for FAU's first generation ocean current turbine

Unknown Date (has links)
This thesis presents the analytically predicted position, motion, attitude, power output and forces on Florida Atlantic University's (FAU) first generation ocean current turbine for a wide range of operating conditions. These values are calculated using a 7- DOF dynamics simulation of the turbine and the cable that attaches it to the mooring system. The numerical simulation modifications and upgrades completed in this work include developing a wave model including the effects of waves into the simulation, upgrading the rotor model to specify the number of blades and upgrading the cable model to specify the number of cable elements. This enhanced simulation is used to quantify the turbine's performance in a wide range of currents, wave fields and when stopping and starting the rotor. For a uniform steady current this simulation predicts that when the rotor is fixed in 1.5 m/s current the drag on the turbine is 3.0 kN, the torque on the rotor is 384 N-m, the turbine roll and pitch are 2.4º and -1.2º . When the rotor is allowed to spin up to the rotational velocity where the turbine produces maximum power, the turbine drag increases to 7.3 kN, the torque increases to 1482 N-m, the shaft power is 5.8 kW, the turbine roll increases to 9º and the turbine pitch stays constant. Subsequently, a sensitivity analysis is done to evaluate changes in turbine performance caused by changes in turbine design and operation. This analysis show, among other things, that a non-axial flow on the turbine of up to 10º has a minimal effect on net power output and that the vertical stable position of the turbine varies linearly with the weight/buoyancy of the turbine with a maximum variation of 1.77 m for each increase or decrease of 1 kg at a current speed of 0.5 m/s. / by Nicolas Vanrietvelde. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
7

Numerical simulation tool for moored marine hydrokinetic turbines

Unknown Date (has links)
The research presented in this thesis utilizes Blade Element Momentum (BEM) theory with a dynamic wake model to customize the OrcaFlex numeric simulation platform in order to allow modeling of moored Ocean Current Turbines (OCTs). This work merges the advanced cable modeling tools available within OrcaFlex with well documented BEM rotor modeling approach creating a combined tool that was not previously available for predicting the performance of moored ocean current turbines. This tool allows ocean current turbine developers to predict and optimize the performance of their devices and mooring systems before deploying these systems at sea. The BEM rotor model was written in C++ to create a back-end tool that is fed continuously updated data on the OCT’s orientation and velocities as the simulation is running. The custom designed code was written specifically so that it could operate within the OrcaFlex environment. An approach for numerically modeling the entire OCT system is presented, which accounts for the additional degree of freedom (rotor rotational velocity) that is not accounted for in the OrcaFlex equations of motion. The properties of the numerically modeled OCT were then set to match those of a previously numerically modeled Southeast National Marine Renewable Energy Center (SNMREC) OCT system and comparisons were made. Evaluated conditions include: uniform axial and off axis currents, as well as axial and off axis wave fields. For comparison purposes these conditions were applied to a geodetically fixed rotor, showing nearly identical results for the steady conditions but varied, in most cases still acceptable accuracy, for the wave environment. Finally, this entire moored OCT system was evaluated in a dynamic environment to help quantify the expected behavioral response of SNMREC’s turbine under uniform current. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
8

Model analysis of a mooring system for an ocean current turbine testing platform

Unknown Date (has links)
In response to Florida's growing energy needs and drive to develop renewable power, Florida Atlantic Universitys Center for Ocean Energy Technology (COET) plans to moor a 20 kW test turbine in the Florida Current. No permanent mooring systems for deepwater hydrokinetic turbines have been constructed and deployed, therefore little if anything is known about the performance of these moorings. To investigate this proposed mooring system, a numeric model is developed and then used to predict the static and dynamic behavior of the mooring system and attachments. The model has been created in OrcaFlex and includes two surface buoys and an operating turbine. Anchor chain at the end of the mooring line develops a catenary, providing compliance. Wind, wave, and current models are used to represent the environmental conditions the system is expected to experience and model the dynamic effects on the system. The model is then used to analyze various components of the system. The results identify that a mooring attachment point 1.25 m forward of the center of gravity on the mooring buoy is ideal, and that the OCDP and turbine tether lengths should be no shorter than 25 and 44 m, respectively. Analysis performed for the full system identify that the addition of the floats decreases the tension at the MTB attachment location by 26.5 to 29.5% for minimum current, and 0.10 to 0.31% for maximum current conditions. / by Allison Rose Cribbs. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
9

Methodology for fault detection and diagnostics in an ocean turbine using vibration analysis and modeling

Unknown Date (has links)
This thesis describes a methodology for mechanical fault detection and diagnostics in an ocean turbine using vibration analysis and modeling. This methodology relies on the use of advanced methods for machine vibration analysis and health monitoring. Because of some issues encountered with traditional methods such as Fourier analysis for non stationary rotating machines, the use of more advanced methods such as Time-Frequency Analysis is required. The thesis also includes the development of two LabVIEW models. The first model combines the advanced methods for on-line condition monitoring. The second model performs the modal analysis to find the resonance frequencies of the subsystems of the turbine. The dynamic modeling of the turbine using Finite Element Analysis is used to estimate the baseline of vibration signals in sensors locations under normal operating conditions of the turbine. All this information is necessary to perform the vibration condition monitoring of the turbine. / by Mustapha Mjit. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
10

Design and finite element analysis of an ocean current turbine blade

Unknown Date (has links)
A composite 3 meter ocean current turbine blade has been designed and analyzed using Blade Element Theory (BET) and commercial Finite Element Modeling (FEM) code, ANSYS. It has been observed that using the numerical BET tool created, power production up to 141 kW is possible from a 3 bladed rotor in an ocean current of 2.5 m/s with the proposed blade design. The blade is of sandwich construction with carbon fiber skin and high density foam core. It also contains two webs made of S2-glass for added shear rigidity. Four design cases were analyzed, involving differences in hydrodynamic shape, material properties, and internal structure. Results from the linear static structural analysis revealed that the best design provides adequate stiffness and strength to produce the proposed power without any structural failure. An Eigenvalue Buckling analysis confirmed that the blade would not fail from buckling prior to overstressed laminate failure if the loading was to exceed the Safety Factor. / by Nicholas S. Asseff. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.

Page generated in 0.1232 seconds