Spelling suggestions: "subject:"1market timeseries"" "subject:"1market timehistories""
1 |
Entropy analysis of financial time seriesSchwill, Stephan January 2016 (has links)
This thesis applies entropy as a model independent measure to address research questions concerning the dynamics of various financial time series. The thesis consists of three main studies as presented in chapters 3, 4 and 5. Chapters 3 and 4 apply an entropy measure to conduct a bivariate analysis of drawdowns and drawups in foreign exchange rates. Chapter 5 investigates the dynamics of investment strategies of hedge funds using entropy of realised volatility in a conditioning model. In all three studies, methods from information theory are applied in novel ways to financial time series. As Information Theory and its central concept of entropy are not widely used in the economic sciences, a methodology chapter was therefore included in chapter 2 that gives an overview on the theoretical background and statistical features of the entropy measures used in the three main studies. In the first two studies the focus is on mutual information and transfer entropy. Both measures are used to identify dependencies between two exchange rates. The chosen measures generalise, in a well defined manner, correlation and Granger causality. A different entropy measure, the approximate entropy, is used in the third study to analyse the serial structure of S&P realised volatility. The study of drawdowns and drawups has so far been concentrated on their uni- variate characteristics. Encoding the drawdown information of a time series into a time series of discrete values, Chapter 3 uses entropy measures to analyse the correlation and cross correlations of drawdowns and drawups. The method to encode the drawdown information is explained and applied to daily and hourly EUR/USD and GBP/USD exchange rates from 2001 to 2012. For the daily series, we find evidence of dependence among the largest draws (i.e. 5% and 95% quantiles), but it is not as strong as the correlation between the daily returns of the same pair of FX rates. There is also dependence between lead/lagged values of these draws. Similar and stronger findings were found among the hourly data. We further use transfer entropy to examine the spill over and lead-lag information flow between drawup/drawdown of the two exchange rates. Such information flow is indeed detectable in both daily and hourly data. The amount of information transferred is considerably higher for the hourly than the daily data. Both daily and hourly series show clear evidence of information flowing from EUR/USD to GBP/USD and, slightly stronger, in the reverse direction. Robustness tests, using effective transfer entropy, show that the information measured is not due to noise. Chapter 4 uses state space models of volatility to investigate volatility spill overs between exchange rates. Our use of entropy related measures in the investigation of dependencies of two state space series is novel. A set of five daily exchange rates from emerging and developed economies against the dollar over the period 1999 to 2012 is used. We find that among the currency pairs, the co-movement of EUR/USD and CHF/USD volatility states show the strongest observed relationship. With the use of transfer entropy, we find evidence for information flows between the volatility state series of AUD, CAD and BRL.Chapter 5 uses the entropy of S&P realised volatility in detecting changes of volatility regime in order to re-examine the theme of market volatility timing of hedge funds. A one-factor model is used, conditioned on information about the entropy of market volatility, to measure the dynamic of hedge funds equity exposure. On a cross section of around 2500 hedge funds with a focus on the US equity markets we find that, over the period from 2000 to 2014, hedge funds adjust their exposure dynamically in response to changes in volatility regime. This adds to the literature on the volatility timing behaviour of hedge fund manager, but using entropy as a model independent measure of volatility regime. Finally, chapter 6 summarises and concludes with some suggestions for future research.
|
2 |
An adaptive NARX neural network approach for financial time series predictionSoman, Parashar Chandrashekhar. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Electrical and Computer Engineering." Includes bibliographical references (p. 80-82).
|
3 |
Integrace akciových trhů v baltických zemích / Baltic Stock Market IntegrationStulga, Šarūnas January 2019 (has links)
1 Abstract In this thesis, we present an empirical analysis of integration between the Baltic and global stock markets during the period between 2000 and 2018. This research is spurred by the fact that all three Baltic countries displaying similar positive economic developments over the studied horizon. Using the theoretical and empirical findings from similar research papers, we ground our work for the analysis. Our methodology is based on three different models: DCC-GARCH, total and frequency connectedness, and the Engle-Granger cointegration test. Using these methods, we are able to determine both short- or long-term relationship dynamics. Based on the results from our empirical analysis we were not able to reject the null hypotheses, that the Baltic states have become more integrated between themselves and the global market. At best, our results would suggest a weak form of integration given that there were indeed some notable dynamic changes. Following these results, we provide insight on interdependencies between the Baltic states and their relationships with the global stock markets. Most notable dynamics are captured by the total connectedness measure, which indicates that the Baltic stock markets show a significantly increased connectedness with the global indices, during turbulent times in the...
|
4 |
Modelling time series counts data in financial microstructure /Heinen, Andreas, January 2004 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2004. / Vita. Includes bibliographical references (leaves 115-118).
|
5 |
Financial soundness and development a multi-country analysis using panel data /Akhter, Md. Selim. January 2008 (has links)
Thesis (Ph.D.)--University of Western Sydney, 2008. / A thesis submitted to the University of Western Sydney, College of Business, School of Economics and Finance, in fulfillment of the requirements for the degree of Doctor of Philosophy. Includes bibliographical references.
|
6 |
Aplicação de medidas de causalidade na geração de cenários de Monte Carlo como alternativa para precificação de contratos de opções / On the application of causality measures for Monte Carlo simulations as alternative to price option contractsRodrigues, Daniel Brignani 22 September 2017 (has links)
Este trabalho tem como objetivo utilizar medidas de causalidade entre séries temporais de grandezas financeiras para determinar a dependência entre os ativos do mercado e utilizar as medidas obtidas para fazer inferências sobre a dinâmica desses ativos. Essa metodologia define um previsor para os valores das séries que, juntamente com a determinação das distribuições de probabilidades empíricas dos erros desse previsor por meio do método de Kernel, permite a amostragem aleatória de cenários multivariados, com diversas aplicações. Os ativos considerados para os testes de causalidade são o índice Ibovespa, o valor da paridade da moeda dólar-real USDBRL (utilizando suas séries de preços e retornos de preços), além da taxa de juros negociada diariamente (CDI). O uso do Método de Monte Carlo (MMC) é abordado para a precificação de opções de compra europeias (calls) de USDBRL e Ibovespa, e a comparação dos resultados gerados por essa metodologia com valores calculados pela fórmula de Black-Scholes (método mais utilizado no mercado financeiro, atualmente), evidenciando suas vantagens e desvantagens. Conclui-se, com este estudo, que, por meio da metodologia proposta, é possível replicar alguns comportamentos intrínsecos do mercado (como a observação de tendências nas séries de preços devido a dependências implícitas, e a presença de caudas pesadas nas distribuições dos retornos) que são desprezados pela maioria dos modelos paramétricos utilizados hoje, bem como o efeito do uso dessas informações no preço de derivativos. / This paper proposes the use of causality measures applied over time-series of financial values to determine the dependency relations between market assets and a way to use the obtained measures to make inferences about the dynamics of these assets. This methodology defines a predictor for values of the time-series that, by determining the empirical probability distributions of the errors generated by this predictor based on the Kernel method, allows a random sampling of multivariated scenarios with many applications. The assets considered for the causality tests are the Ibovespa index, the dollar-real parity value USDBRL (using their price and price-return series), in addition to the daily traded interest rate (CDI). The use of the Monte Carlo Method (MMC) for the pricing of European call options (USDBRL) and Ibovespa was discussed, in addition to a comparison of the results generated by this methodology with values calculated by the Black-Scholes formula (currently the most used method by finance institutions), showing its advantages and disadvantages. The conclusion is that, based on the proposed methodology, it is possible to replicate some intrinsic market behaviors (such as the existence of trends in price series, due to implicit dependencies, and the presence of fat tails in the distributions of price-returns) that are neglected by most of parametric models, currently, as well as the effect of using this information for pricing derivatives.
|
7 |
Aplicação de medidas de causalidade na geração de cenários de Monte Carlo como alternativa para precificação de contratos de opções / On the application of causality measures for Monte Carlo simulations as alternative to price option contractsDaniel Brignani Rodrigues 22 September 2017 (has links)
Este trabalho tem como objetivo utilizar medidas de causalidade entre séries temporais de grandezas financeiras para determinar a dependência entre os ativos do mercado e utilizar as medidas obtidas para fazer inferências sobre a dinâmica desses ativos. Essa metodologia define um previsor para os valores das séries que, juntamente com a determinação das distribuições de probabilidades empíricas dos erros desse previsor por meio do método de Kernel, permite a amostragem aleatória de cenários multivariados, com diversas aplicações. Os ativos considerados para os testes de causalidade são o índice Ibovespa, o valor da paridade da moeda dólar-real USDBRL (utilizando suas séries de preços e retornos de preços), além da taxa de juros negociada diariamente (CDI). O uso do Método de Monte Carlo (MMC) é abordado para a precificação de opções de compra europeias (calls) de USDBRL e Ibovespa, e a comparação dos resultados gerados por essa metodologia com valores calculados pela fórmula de Black-Scholes (método mais utilizado no mercado financeiro, atualmente), evidenciando suas vantagens e desvantagens. Conclui-se, com este estudo, que, por meio da metodologia proposta, é possível replicar alguns comportamentos intrínsecos do mercado (como a observação de tendências nas séries de preços devido a dependências implícitas, e a presença de caudas pesadas nas distribuições dos retornos) que são desprezados pela maioria dos modelos paramétricos utilizados hoje, bem como o efeito do uso dessas informações no preço de derivativos. / This paper proposes the use of causality measures applied over time-series of financial values to determine the dependency relations between market assets and a way to use the obtained measures to make inferences about the dynamics of these assets. This methodology defines a predictor for values of the time-series that, by determining the empirical probability distributions of the errors generated by this predictor based on the Kernel method, allows a random sampling of multivariated scenarios with many applications. The assets considered for the causality tests are the Ibovespa index, the dollar-real parity value USDBRL (using their price and price-return series), in addition to the daily traded interest rate (CDI). The use of the Monte Carlo Method (MMC) for the pricing of European call options (USDBRL) and Ibovespa was discussed, in addition to a comparison of the results generated by this methodology with values calculated by the Black-Scholes formula (currently the most used method by finance institutions), showing its advantages and disadvantages. The conclusion is that, based on the proposed methodology, it is possible to replicate some intrinsic market behaviors (such as the existence of trends in price series, due to implicit dependencies, and the presence of fat tails in the distributions of price-returns) that are neglected by most of parametric models, currently, as well as the effect of using this information for pricing derivatives.
|
8 |
Mercado de ações brasileiro em alta-frequência: Evidências de sua previsibilidade com modelagem morfológica-linearARAÚJO, Ricardo De Andrade 01 January 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-09-27T18:39:30Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
RicardoDeAndradeAraujo.pdf: 2136922 bytes, checksum: 3bf9d638152b4cc1870ed7c533772fae (MD5) / Made available in DSpace on 2016-09-27T18:39:30Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
RicardoDeAndradeAraujo.pdf: 2136922 bytes, checksum: 3bf9d638152b4cc1870ed7c533772fae (MD5)
Previous issue date: 2016-01-01 / CNPQ / Este trabalho apresenta um estudo sobre séries temporais financeiras, em alta-frequência,
na tentativa de identificar as características do seu fenômeno gerador e, baseado neste estudo,
propor um modelo, composto por uma combinação balanceada entre operadores lineares e operadores
não-lineares crescentes e decrescentes, capaz de prever este tipo particular de série
temporal. Para o processo de aprendizagem, é proposto um método baseado em gradiente descendente,
utilizando ideias do algoritmo de retropropagação do erro (back propagation, BP) e
uma abordagem alternativa para superar o problema da não-diferenciabilidade dos operadores
não-lineares.
Uma análise experimental é conduzida com o modelo proposto, utilizando um conjunto
de séries temporais financeiras, em alta-frequência, do mercado de ações Brasileiro: Banco do
Brasil SA, Banco Bradesco SA, Brasil Foods SA, BR Malls Participações SA e Companhia
Energética Minas Gerais. Nestes experimentos, um conjunto relevante de medidas é utilizado
para avaliar o desempenho preditivo do modelo proposto, e os resultados alcançados superam
aqueles obtidos utilizando técnicas estatísticas, neurais e híbridas apresentadas na literatura.
Também, são realizadas simulações com um sistema de apoio à decisão, baseado em previsão,
para compra e venda de ações, tendo em vista demonstrar o desempenho econômico expressivo
do modelo proposto no mercado de ações, em alta-frequência. / This work presents a study about high-frequency financial time series to identify the
characteristics of their generator phenomenon and, based on such study, to propose a model,
composed of a balanced combination of linear operators and increasing and decreasing nonlinear
operators, able to predict this kind of time series. For the learning process, it is proposed
a descent gradient-based method, using ideas from the back propagation (BP) algorithm and a
systematic approach to overcome the problem of nondifferentiability of nonlinear operators.
An experimental analysis is conducted with the proposed model, using a set of highfrequency
financial time series of the Brazilian stock market: Banco do Brasil SA, Banco
Bradesco SA, Brasil Foods SA, BR Malls Participações SA and Companhia Energética Minas
Gerais. In these experiments, a relevant set of measures are used to assess the prediction performance
of the proposed model, and the achieved results overcome those obtained by statistical,
neural and hybrid techniques presented in the literature. Also, it is performed simulations with
a prediction-based decision support system, for buy and sale of stocks, to demonstrate the significant
economic performance of the proposed model in real high-frequency stock market
|
9 |
Predikce hodnot v čase / Prediction of Values on a Time LineMaršová, Eliška January 2016 (has links)
This work deals with the prediction of numerical series whose application is suitable for prediction of stock prices. They explain the procedures for analysis and works with price charts. Also explains the methods of machine learning. Knowledge is used to build a program that finds patterns in numerical series for estimation.
|
Page generated in 0.0766 seconds