Spelling suggestions: "subject:"amarketing mix modelling"" "subject:"bmarketing mix modelling""
1 |
Marketing Mix Modelling: A comparative study of statistical models / En jämförelsestudie av statistiska modeller i en Marketing Mix Modelling-kontextWigren, Richard, Cornell, Filip January 2019 (has links)
Deciding the optimal media advertisement spending is a complex issue that many companies today are facing. With the rise of new ways to market products, the choices can appear infinite. One methodical way to do this is to use Marketing Mix Modelling (MMM), in which statistical modelling is used to attribute sales to media spendings. However, many problems arise during the modelling. Modelling and mitigation of uncertainty, time-dependencies of sales, incorporation of expert information and interpretation of models are all issues that need to be addressed. This thesis aims to investigate the effectiveness of eight different statistical and machine learning methods in terms of prediction accuracy and certainty, each one addressing one of the previously mentioned issues. It is concluded that while Shapley Value Regression has the highest certainty in terms of coefficient estimation, it sacrifices some prediction accuracy. The overall highest performing model is the Bayesian hierarchical model, achieving both high prediction accuracy and high certainty.
|
2 |
Bayesian Structural Time Series in Marketing Mix Modelling / Bayesianska Strukturella Tidsseriemodeller inom Marketing Mix ModelleringKarlsson, Jessika January 2022 (has links)
Marketing Mix Modelling has been used since the 1950s, leveraging statistical inference to attribute media investments to sales. Typically, regression models have been used to model the relationship between the two. However, the media landscape evolves at an increasingly rapid pace, driving the need for more refined models which are able to accurately capture these changes. One class of such models are Bayesian structural time series, which are the focal point in this thesis. This class of models retains the relationship between media investments and sales, while also allowing for model parameters to vary over time. The effectiveness of these models is evaluated with respect to prediction accuracy and certainty, both in and out-of-sample. A total of four different models of varying degrees of complexity were investigated. It was concluded that the in-sample performance was similar across models, yet when it came to out-of-sample performance models with time-varying performance outperformed their static counterparts, with respect to uncertainty. Furthermore, the functional form of the intercept influenced the uncertainty of the forecasts on extended time horizons. / Marketing mix modellering har använts sedan 1950-talet för att dra slutsatser om hur mediainvesteringar påverkar försäljning, med hjälp av statistisk inferens. Vanligtvis har regressionmodeller använts för att modellera relationen mellan de två. Men medielandskapet utvecklas allt snabbare, vilket kräver mer sofistikerade modeller som kan fånga upp dessa förändringar på ett mer precist sätt. En klass av sådana modeller är Bayesianska strukturella tidsseriemodeller, som är fokus för detta arbete. Denna klass av modeller bibehåller den strukturella relationen mellan mediainvesteringar och försäljning, samtidigt som de också tillåter modellparametrarna att variera över tid. Effektiviteten hos modellerna bedöms med avseende på noggrannhet och säkerhet, både tränings- och testdata. Totalt fyra olika modeller med varierande komplexitet undersöktes. Det konstaterades att prestandan på träningsdata var likvärdig mellan modellerna, men när det gällde testdata presterade modeller med tidsvarierande parametrar bättre än sina statiska motsvarigheter, med avseende på osäkerhet. Dessutom påverkade den funktionella formen av interceptet osäkerheten hos prognoserna över längre tidshorisonter.
|
Page generated in 0.4819 seconds