Spelling suggestions: "subject:"markov"" "subject:"darkov""
211 |
Off-line cursive handwriting recognition using recurrent neural networksSenior, Andrew William January 1994 (has links)
No description available.
|
212 |
Geriatric flow rate modellingTaylor, Gordon John January 1997 (has links)
No description available.
|
213 |
Statistical estimation for non-homogeneous stochastic population models with particular application to manpower planningMontgomery, Erin James January 1998 (has links)
No description available.
|
214 |
Damage models and their applicationsAlbassam, Mohammad January 2000 (has links)
No description available.
|
215 |
A Bayesian approach to the job search model and its application to unemployment durations using MCMC methodsWalker, Neil Rawlinson January 1999 (has links)
No description available.
|
216 |
Performance of multi-state Markov modulated queuing in ATM networksYousef, Sufian Yacoub Salameh January 1998 (has links)
No description available.
|
217 |
Multiple profile modelsRimmer, Martin John January 1999 (has links)
No description available.
|
218 |
The filtering of linear dynamic models with switching coefficientsBrowne, Perry James January 1996 (has links)
No description available.
|
219 |
Reinforcement learning applied to option pricingMartin, K. S. 01 September 2014 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2014. / This dissertation considers the pricing of European and American options.
European option prices are determined by the market and can be veri ed by
a closed-form solution to the Black-Scholes model. These options can only be
exercised at the maturity date. American option prices are not derived from the
market and cannot be priced using the same closed-form solution as in the case
of the European options because American options can be exercised at any time
on or before the maturity date. An initial method was investigated in pricing
a European option but could not price American options. Improvements were
made producing two robust option pricing models. The results of which were
compared to the closed-form solution in the case of European options and
a numerical approximation solution in the case of American options. The
improved models showed two signi cant bene ts. The rst bene t is the ability
to price both European and American options and the second is the ability
to calibrate the models to market prices using market data. Changes to the
parameters of the models showed the limitations of each improved model.
In conclusion, the improved methods are e ective procedures for solving the
European and American option pricing problem.
Keywords: European options, American options, Markov Decision Processes,
Kernel-Based Reinforcement Learning, Calibration.
|
220 |
Localização multirrobo cooperativa com planejamento / Planning for multi-robot localizationPinheiro, Paulo Gurgel, 1983- 11 September 2018 (has links)
Orientador: Jacques Wainer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-09-11T21:14:07Z (GMT). No. of bitstreams: 1
Pinheiro_PauloGurgel_M.pdf: 1259816 bytes, checksum: a4783df9aa3755becb68ee233ad43e3c (MD5)
Previous issue date: 2009 / Resumo: Em um problema de localização multirrobô cooperativa, um grupo de robôs encontra-se em um determinado ambiente, cuja localização exata de cada um dos robôs é desconhecida. Neste cenário, uma distribuição de probabilidades aponta as chances de um robô estar em um determinado estado. É necessário então, que os robôs se movimentem pelo ambiente e gerem novas observações que serão compartilhadas, para calcular novas estimativas. Nos últimos anos, muitos trabalhos têm focado no estudo de técnicas probabilísticas, modelos de comunicação e modelos de detecções, para resolver o problema de localização. No entanto, a movimentação dos robôs é, em geral, definida por ações aleatórias. Ações aleatórias geram observações que podem ser inúteis para a melhoria da estimativa. Este trabalho apresenta uma proposta de localização com suporte a planejamento de ações. O objetivo é apresentar um modelo cujas ações realizadas pelos robôs são definidas por políticas. Escolhendo a melhor ação a ser realizada, é possível receber informações mais úteis dos sensores internos e externos e estimar as posturas mais rapidamente. O modelo proposto, denominado Modelo de Localização Planejada - MLP, utiliza POMDPs para modelar os problemas de localização e algoritmos específicos de geração de políticas. Foi utilizada a localização de Markov como técnica probabilística de localização e implementadas versões de modelos de detecção e propagação de informação. Neste trabalho, um simulador de problemas de localização multirrobô foi desenvolvido, no qual foram realizados experimentos em que o modelo proposto foi comparado a um modelo que não faz uso de planejamento de ações. Os resultados obtidos apontam que o modelo proposto é capaz de estimar as posturas dos robôs com uma menor quantidade de passos, sendo significativamente mais e ciente do que o modelo comparado sem planejamento. / Abstract: In a cooperative multi-robot localization problem, a group of robots is in a certain environment, where the exact location of each robot is unknown. In this scenario, there is only a distribution of probabilities indicating the chance of a robot to be in a particular state. It is necessary for the robots to move in the environment generating new observations, which will be shared to calculate new estimates. Currently, many studies have
focused on the study of probabilistic techniques, models of communication and models of detection to solve the localization problem. However, the movement of robots is generally defined by random actions. Random actions generate observations that can be useless for improving the estimate. This work describes a proposal for multi-robot localization with support planning of actions. The objective is to describe a model whose actions performed by robots are defined by policies. Choosing the best action to be performed, the robot gets more useful information from internal and external sensors and estimates the posture more quickly. The proposed model, called Model of Planned Localization - MPL, uses POMDPs to model the problems of location and specific algorithms to generate policies. The Markov localization was used as probabilistic technique of localization and implemented versions of detection models and information propagation model. In this work, a simulator to multi-robot localization problems was developed, in which experiments were performed. The proposed model was compared to a model that does not make use of planning actions. The results showed that the proposed model is able to estimate the positions of robots with lower number of steps, being more e-cient than model compared. / Mestrado / Inteligencia Artificial / Mestre em Ciência da Computação
|
Page generated in 0.031 seconds