Spelling suggestions: "subject:"markov processes."" "subject:"darkov processes.""
241 |
Complexity results for infinite-horizon Markov decision processes /Madani, Omid. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 142-150).
|
242 |
Substitution operatorsVanessa Rocha, Andréa 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T18:28:46Z (GMT). No. of bitstreams: 2
arquivo4238_1.pdf: 678788 bytes, checksum: 1a19da235845c146881443f4bbcb79b9 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2009 / Nós estudamos um novo tipo de processo estocástico a tempo discreto, que nós chamamos de processos de substituição. Como o tempo é discreto, nós podemos definir este processo através de um operador que transforma uma medida de probabilidade (em um certo espaço) em outra. Vale a pena notar que a maioria dos estudos de processos de partículas interagentes se baseia na suposição de que o conjunto de sítios, também chamado de espaço, não muda ao longo da interação. Existem apenas poucos trabalhos onde os sítios podem aparecer e desaparecer durante a realização do processo, e este trabalho é um deles. Considere então um conjunto finito não-vazio A chamado de alfabeto, cujos elementos são chamados de letras. Sequências finitas de letras são chamadas de palavras e o comprimento de uma palavra é o número de letras que existe nela. Os elementos de AZ (sequências bi-infinitas de letras) são chamados de configurações. Denotamos por M o conjunto de medidas de probabilidade invariantes por translação. Nós podemos definir um operador de substituição genérico como um operador de M em M que substitui cada ocorrência de uma palavra G (onde G precisa satisfazer uma certa condição) em uma configuração por outra palavra H com probabilidade ρ, onde ρ pertence a [0; 1], independentemente das outras ocorrências. A nossa maior contribuição é dada pela definição e estudo dos operadores de substituição em geral. O caso mais interessante do operador de substituição, na nossa opinião, é o caso em que G e H têm comprimentos diferentes; a própria definição do operador neste caso é não-trivial. De fato, foi preciso desenvolver uma teoria de aproximação de medidas por sequências de palavras para lidar com este caso. Uma dificuldade com este caso é que os operadores de substituição não são lineares. No entanto, foi possível provar que todos eles são finos, que nos parece ser a melhor propriedade depois da linearidade. Nós também provamos que todos os operadores de substituição são contínuos e nós utilizamos este fato para obter conclusões a respeito da existência de medidas invariantes por estes operadores, o que nos ajuda a estudar ergodicidade do processo de substituição. Por fim, nós esperamos que estas propriedades possam ser relacionadas com certas necessidades de ciências aplicadas
|
243 |
From a linear birth-growth model to insurance risk models with applications to financeYin, Chuancun 01 January 2002 (has links)
No description available.
|
244 |
Numerical methods for solving Markov chain driven Black-Scholes modelAu, Chi Yan 01 January 2010 (has links)
No description available.
|
245 |
A dynamic programming - Markov chain algorithm for determining optimal component replacement policiesYoung, G. Glen January 1970 (has links)
An algorithm is developed to determine the optimal component replacement rules to follow in managing a particular
class of equipment. The work follows basically the models developed previously by S.E. Dreyfus and R.A. Howard. However, a different Markov state description has been used to extend the application of these models to systems of more than one component subject to stochastic failure and for which the failure of any component renders the entire system inoperative. The model, in effect, selects optimal replacement alternatives as individual components fail, under the uncertainty of further failures occurring in the same transition interval. The model was programmed for an I.B.M. 360/67 computer and the results for a hypothetical problem were checked through renewal theory. / Forestry, Faculty of / Graduate
|
246 |
Markov random fields in visual reconstruction : a transputer-based multicomputer implementationSiksik, Ola January 1990 (has links)
Markov Random Fields (MRFs) are used in computer vision as an effective method for reconstructing a function starting from a set of noisy, or sparse data, or in the integration
of early vision processes to label physical discontinuities. The MRF formalism is attractive because it enables the assumptions used to be explicitly stated in the energy function. The drawbacks of such models have been the computational complexity of the implementation, and the difficulty in estimating the parameters of the model.
In this thesis, the deterministic approximation to the MRF models derived by Girosi and Geiger[10] is investigated, and following that approach, a MIMD based algorithm is developed and implemented on a network of T800 transputers under the Trollius operating
system. A serial version of the algorithm has also been implemented on a SUN 4 under Unix.
The network of transputers is configured as a 2-dimensional mesh of processors (currently
16 configured as a 4 x 4 mesh), and the input partitioning method is used to distribute the original image across the network.
The implementation of the algorithm is described, and the suitability of the transputer for image processing tasks is discussed.
The algorithm was applied to a number of images for edge detection, and produced good results in a small number of iterations. / Science, Faculty of / Computer Science, Department of / Graduate
|
247 |
Investigating bridge deck deterioration using failure analysis technique and Markov chainsNarayanappa, Harish 26 January 2010 (has links)
Master of Science
|
248 |
Markov processes in disease modelling : estimation and implementationMarais, Christiaan Antonie 15 September 2010 (has links)
There exists a need to estimate the potential financial, epidemiological and societal impact that diseases, and the treatment thereof, can have on society. Markov processes are often used to model diseases to estimate these quantities of interest and have an advantage over standard survival analysis techniques in that multiple events can be studied simultaneously. The theory of Markov processes is well established for processes for which the process parameters are known but not as much of the literature has focussed on the estimation of these transition parameters. This dissertation investigates and implements maximum likelihood estimators for Markov processes based on longitudinal data. The methods are described based on processes that are observed such that all transitions are recorded exactly, processes of which the state of the process is recorded at equidistant time points, at irregular time points and processes for which each process is observed at a possibly different irregular time point. Methods for handling right censoring and estimating the effect of covariates on parameters are described. The estimation methods are implemented by simulating Markov processes and estimating the parameters based on the simulated data so that the accuracy of the estimators can be investigated. We show that the estimators can provide accurate estimates of state prevalence if the process is stationary, even with relatively small sample sizes. Furthermore, we indicate that the estimators lack good accuracy in estimating the effect of covariates on parameters unless state transitions are recorded exactly. The methods are discussed with reference to the msm package for R which is freely available and a popular tool for estimating and implementing Markov processes in disease modelling. Methods are mentioned for the treatment of aggregate data, diseases where the state of patients are not known with complete certainty at every observation and diseases where patient interaction plays a role. / Dissertation (MSc)--University of Pretoria, 2010. / Statistics / unrestricted
|
249 |
Reinforcement learning in the presence of rare eventsFrank, Jordan William, 1980- January 2009 (has links)
No description available.
|
250 |
Lax probabilistic bisimulationTaylor, Jonathan, 1981- January 2008 (has links)
No description available.
|
Page generated in 0.179 seconds