Spelling suggestions: "subject:"stochastic geometry"" "subject:"ctochastic geometry""
1 |
The asymptotic distribution and robustness of the likelihood ratio and score test statisticsEmberson, E. A. January 1995 (has links)
Cordeiro & Ferrari (1991) use the asymptotic expansion of Harris (1985) for the moment generating function of the score statistic to produce a generalization of Bartlett adjustment for application to the score statistic. It is shown here that Harris's expansion is not invariant under reparameterization and an invariant expansion is derived using a method based on the expected likelihood yoke. A necessary and sufficient condition for the existence of a generalized Bartlett adjustment for an arbitrary statistic is given in terms of its moment generating function. Generalized Bartlett adjustments to the likelihood ratio and score test statistics are derived in the case where the interest parameter is one-dimensional under the assumption of a mis-specified model, where the true distribution is not assumed to be that under the null hypothesis.
|
2 |
Capacity of multi-antenna ad hoc networks via stochastic geometryHunter, Andrew Marcus 30 January 2013 (has links)
This thesis takes as its objective quantifying, comparing, and optimizing multiple-antenna (MIMO) physical layer techniques in dense ad hoc wireless networks. A framework is developed from the spatial shot noise interference model for packet radio network analysis. The framework captures the behavior of a wide variety of signal and interference distributions, which permit inspection of a number of signal processing methods including representatives from most of the major MIMO techniques. Multi-antenna systems for point-to-point are becoming mature and being developed and deployed in many wireless communication systems due to their potential to combat fading, increase spectral efficiency, and overcome interference.
The framework permits an algorithm or system designer to view the network from the perspective of a typical user, to optimize performance in the midst of a given environment, or to view the network as a whole, to determine behavior that maximizes network performance. In particular, it enables questions to be answered quantitatively, such as which MIMO techniques perform best in a given environment? Or what rate and power settings should be used across the available spatial modes? Or what is the maximum benefit of channel state information? Or what gain should an individual device, or the network as a whole expect to see given a particular physical layer strategy?
The dissertation begins by developing the framework for a generic set of assumptions on network behavior and signal and interference distributions. It then presents a progression of applications to representative MIMO techniques. Broad and intuitive scaling laws are developed as well as detailed exact results for careful comparison. Capacity scaling with the number of antennas is given for systems employing beamforming, selection combining, space-time block coding, and spatial multiplexing. These applications are used as the basis for developing simple distributed algorithms for optimizing MIMO settings with QoS constraints and in heterogeneous networks. Lastly, the framework is expanded to permit comparison and optimization of MIMO performance under alternative medium access strategies. In general it is found that significant performance gains can be reaped with multi-antenna physical layers, provided the proper techniques are employed. It is also shown that the availability of multiple spatial channels impacts the inherent tradeoff between per-link throughput and spatial reuse. / text
|
3 |
From a linear birth-growth model to insurance risk models with applications to financeYin, Chuancun 01 January 2002 (has links)
No description available.
|
4 |
Modeling and Analysis of Hybrid Aerial-Terrestrial Networks: A Stochastic Geometry ApproachAlshaikh, Khlod K. 12 1900 (has links)
The ever-increasing demand for better mobile experiences is propelling the research
communities to look ahead at how future networks can be geared up to meet
such demands. It is likely that the next-generation of wireless communications will be
revolutionary, outpacing the current systems capabilities in terms connectivity, reliability
and intelligence. These trends and predictions will cause a revolutionary change
in the wireless communications. In this context, the concept of Ultra-Dense Network
(UDN) is poised to be the cornerstone of the development of fifth generation(5G) systems,
whereby a massive number of base stations (BSs) are deployed for enhancing the
network performance metrics. Though such densification might be economically viable
in urban areas, it is mostly unfavorable in rural ones due to the sheer complexity
and the various factors involved the planning and installation processes; all of which
trigger the need for cost-effective, flexible and easily-implementable solutions. As a
result, unmanned aerial vehicles (UAVs) emerge as a promising alternative solution
for enhancing wireless coverage. Due to their mobility capabilities, UAVs are of particular
importance in events of (i) terrestrial-based cellular systems dilapidation, (ii)
infrastructure absence in remote and suburban areas, or (iii) limited-duration events
or activities wherein there is a short-term need for supplementary network resources
to handle the overload. While a growing body literature works towards characterizing
and providing insights into the performance of UAVs-only networks (serving the
first two purposes), understanding the performance of such networks when coupled
with existing terrestrial BSs remains a challenging, yet interesting, open research
venue. Towards this direction, this thesis provides a rigorous analysis of the downlink
coverage probability of hybrid aerial-terrestrial networks using tools from Stochastic
Geometry. The thesis presents a mathematical model that characterizes the coverage
probability metric under different network environments. The proposed model is validated
against intensive simulations so as to substantiate the analytical results. The
developed work is essential to understanding the premises of one possible solution to
the UDNs of tomorrow, capture its key performance metrics and, most importantly, to
uncover key design insights and reveal new directions for the wireless communication
industry.
|
5 |
Energy Aware Management of 5G NetworksLiu, Chang January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / The number of wireless devices is predicted to skyrocket from about 5 billion in 2015 to 25 billion by 2020. Therefore, traffic volume demand is envisioned to explode in the very near future. The proposed fifth generation (5G) of mobile networks is expected to be a mixture of network components with different sizes, transmit powers, back-haul connections and radio access technologies. While there are many interesting problems within the 5G framework, we address the challenges of energy-related management in a heterogeneous 5G networks. Based on the 5G architecture, in this dissertation, we present some fundamental methodologies to analyze and improve the energy efficiency of 5G network components using mathematical tools from optimization, control theory and stochastic geometry.
Specifically, the main contributions of this research include:
• We design power-saving modes in small cells to maximize energy efficiency. We first derive performance metrics for heterogeneous cellular networks with sleep modes based on stochastic geometry. Then we quantify the energy efficiency and maximize it with quality-of-service constraint based on an analytical model. We also develop a simple sleep strategy to further improve the energy efficiency according to traffic conditions.
• We conduct a techno-economic analysis of heterogeneous cellular networks powered by both on-grid electricity and renewable energy. We propose a scheme to minimize the electricity cost based on a real-time pricing model.
• We provide a framework to uncover desirable system design parameters that offer the best gains in terms of ergodic capacity and average achievable throughput for device-to-device underlay cellular networks. We also suggest a two-phase scheme to optimize the ergodic capacity while minimizing the total power consumption.
• We investigate the modeling and analysis of simultaneous information and energy transfer in Internet of things and evaluate both transmission outage probability and power outage probability. Then we try to balance the trade-off between the outage performances by careful design of the power splitting ratio.
This research provides valuable insights related to the trade-offs between energy-conservation and system performance in 5G networks. Theoretical and simulation results help verify the performance of the proposed algorithms.
|
6 |
A Non-Uniform User Distribution and its Performance Analysis on K-tier Heterogeneous Cellular Networks Using Stochastic GeometryLi, Chao 07 February 2019 (has links)
In the cellular networks, to support the increasing data rate requirements, many base
stations (BSs) with low transmit power and small coverage area are deployed in addition to classical macro cell BSs. Low power nodes, such as micro, pico, and femto nodes (indoor and outdoor), which complement the conventional macro networks, are placed primarily to increase capacity in hotspots (such as shopping malls and conference centers) and to enhance coverage of macro cells near the cell boundary. Combining macro and small cells results in heterogeneous networks (HetNets).
An accurate node (BS or user equipment (UE)) model is important in the research, design, evaluation, and deployment of 5G HetNets. The distance between transmitter (TX), receiver (RX), and interferer determines the received signal power and interference signal power. Therefore, the spatial placement of BSs and UEs greatly impacts the performance of cellular networks. However, the investigation on the spatial distribution of UE is limited, though there is ample research on the topic of the spatial distribution of BS. In HetNets, UEs tend to cluster around BSs or social attractors (SAs). The spatial distribution of these UEs is non-uniform. Therefore, the analysis of the impact of non-uniformity of UE distribution on HetNets is essential for designing efficient HetNets. This thesis presents a non-uniform user distribution model based on the existing K-tier BS distribution. Our proposed non-uniform user distribution model is such that a Poisson cluster process with the cluster centers located at SAs in which SAs have a base station offset with their BSs. There are two parameters (cluster radius and base station offset) the combination of which can cover many possible non-uniformity. The heterogeneity analysis of the proposed nonuniform user distribution model is also given.
The downlink performance analysis of the designed non-uniform user model is investigated. The numerical results show that our theoretical results closely match the simulation results. Moreover, the effect of BS parameters of small cells such as BS density, BS cell extension bias factor, and BS transmit power is included. At the same time, the uplink coverage probability by the theoretical derivation is also analyzed based on some simplifying assumptions as a result of the added complexity of the uplink analysis due to the UEs’ mobile position and the uplink power control. However, the numerical results show a small gap between the theoretical results and the simulation results, suggesting that our simplifying assumptions are acceptable if the system requirement is not very strict. In addition to the effect of BS density, BS cell extension bias factor, and BS transmit power, the effect of fractional power control factor in the uplink is also introduced. The comparison between the downlink and the uplink is discussed and summarized at the end.
The main goal of this thesis is to develop a comprehensive framework of the non-uniform user distribution in order to produce a tractable analysis of HetNets in the downlink and the uplink using the tools of stochastic geometry
|
7 |
Stochastic geometry with applications to river networksPeckham, Scott 14 February 1990 (has links)
Empirical observations have established connections between river network geometry
and various hydrophysical quantities of interest. Since rivers can be decomposed into
basic components known as links, one would like to understand the physical processes at
work in link formation and maintenance. The author develops a natural stochastic
geometric model for this problem, for the particular type of link known as exterior links.
In the model, the distribution of distance from a uniformly distributed point to a fixed
graph is computed. This model yields an approximate expression for the distribution of
length of exterior links that incorporates junction angles and drainage density, and
compares favorably with observed length distributions. The author goes on to investigate
related mathematical questions of independent interest, such as the case where the
previously mentioned graph is itself a realization of a random process, and in so doing
derives a formula for the first contact distribution of a general random Voronoi tesselation
(also associated with the names of Dirichlet and Thiessen). Since this random tesselation
is a natural starting point for modelling spatial processes in a wide variety of fields, these
results should find immediate applications. It is also shown how these results can be
interpreted as a generalization of a classical problem considered by Buffon. / Graduation date: 1991
|
8 |
Fractional frequency reuse for multi-tier cellular networksNovlan, Thomas David 12 July 2012 (has links)
Modern cellular systems feature increasingly dense base station deployments,
augmented by multiple tiers of access points, in an effort to provide higher network
capacity as user traffic, especially data traffic, increases. The primary limitation of
these dense networks is co-channel interference. The primary source of interference
is inter-cell and cross-tier interference, which is especially limiting for users near the
boundary of the cells. Inter-cell interference coordination (ICIC) is a broad umbrella
term for strategies to improve the performance of the network by having each
cell allocate its resources such that the interference experienced in the network is
minimized, while maximizing spatial reuse. Fractional frequency reuse (FFR) has
been proposed as an ICIC technique in modern wireless networks. The basic idea of
FFR is to partition the cell’s bandwidth so that (i) cell-edge users of adjacent cells
do not interfere with each other and (ii) interference received by (and created by)
cell-interior users is reduced, while (iii) improving spectral reuse compared to conventional
frequency reuse. It is attractive for its intuitive implementation and relatively
low network coordination requirements compared to other ICIC strategies including
interference cancellation, network MIMO, and opportunistic scheduling. There are two common FFR deployment modes: Strict FFR and Soft Frequency Reuse (SFR).
This dissertation identifies and addresses key technical challenges associated with
fractional frequency reuse in modern cellular networks by utilizing an accurate yet
tractable model of both the downlink (base station to mobile) and uplink (mobile to
base station) based on the Poisson point process for modeling base station locations.
The resulting expressions allow for the development of system design guidelines as a
function of FFR parameters and show their impact on important metrics of coverage,
rate, power control, and spectral efficiency. This new complete analytical framework
addresses system design and performance differences in the uplink and downlink.
Also, this model can be applied to cellular networks with multiple tiers of access
points, often called heterogeneous cellular networks. The model allows for analysis
as a function of system design parameters for users under Strict FFR and SFR with
closed and open access between tiers. / text
|
9 |
Performance analysis of spectrum sensing techniques for future wireless networksHe, Yibo January 2017 (has links)
In this thesis, spectrum sensing techniques are investigated for cognitive radio (CR) networks in order to improve the sensing and transmission performance of secondary networks. Specifically, the detailed exploration comprises of three areas, including single-node spectrum sensing based on eigenvalue-based detection, cooperative spectrum sensing under random secondary networks and full-duplex (FD) spectrum sensing and sharing techniques. In the first technical chapter of this thesis, eigenvalue-based spectrum sensing techniques, including maximum eigenvalue detection (MED), maximum minimum eigenvalue (MME) detection, energy with minimum eigenvalue (EME) detection and the generalized likelihood ratio test (GLRT) eigenvalue detector, are investigated in terms of total error rates and achievable throughput. Firstly, in order to consider the benefits of primary users (PUs) and secondary users (SUs) simultaneously, the optimal decision thresholds are investigated to minimize the total error rate, i.e. the summation of missed detection and false alarm rate. Secondly, the sensing-throughput trade-off is studied based on the GLRT detector and the optimal sensing time is obtained for maximizing the achievable throughput of secondary communications when the target probability of detection is achieved. In the second technical chapter, the centralized GLRT-based cooperative sensing technique is evaluated by utilizing a homogeneous Poisson point process (PPP). Firstly, since collaborating all the available SUs does not always achieve the best sensing performance under a random secondary network, the optimal number of cooperating SUs is investigated to minimize the total error rate of the final decision. Secondly, the achievable ergodic capacity and throughput of SUs are studied and the technique of determining an appropriate number of cooperating SUs is proposed to optimize the secondary transmission performance based on a target total error rate requirement. In the last technical chapter, FD spectrum sensing (FDSS) and sensing-based spectrum sharing (FD-SBSS) are investigated. There exists a threshold pair, not a single threshold, due to the self-interference caused by the simultaneous sensing and transmission. Firstly, by utilizing the derived expressions of false alarm and detection rates, the optimal decision threshold pair is obtained to minimize total error rate for the FDSS scheme. Secondly, in order to further improve the secondary transmission performance, the FD-SBSS scheme is proposed and the collision and spectrum waste probabilities are studied. Furthermore, different antenna partitioning methods are proposed to maximize the achievable throughput of SUs under both FDSS and FD-SBSS schemes.
|
10 |
Energy aware management of 5G networksLiu, Chang January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / The number of wireless devices is predicted to skyrocket from about 5 billion in 2015 to 25 billion by 2020. Therefore, traffic volume demand is envisioned to explode in the very near future. The proposed fifth generation (5G) of mobile networks is expected to be a mixture of network components with different sizes, transmit powers, back-haul connections and radio access technologies. While there are many interesting problems within the 5G framework, we address the challenges of energy-related management in a heterogeneous 5G networks. Based on the 5G architecture, in this dissertation, we present some fundamental methodologies to analyze and improve the energy efficiency of 5G network components using mathematical tools from optimization, control theory and stochastic geometry.
Specifically, the main contributions of this research include:
• We design power-saving modes in small cells to maximize energy efficiency. We first derive performance metrics for heterogeneous cellular networks with sleep modes based on stochastic geometry. Then we quantify the energy efficiency and maximize it with quality-of-service constraint based on an analytical model. We also develop a simple sleep strategy to further improve the energy efficiency according to traffic conditions.
• We conduct a techno-economic analysis of heterogeneous cellular networks powered by both on-grid electricity and renewable energy. We propose a scheme to minimize the electricity cost based on a real-time pricing model.
• We provide a framework to uncover desirable system design parameters that offer the best gains in terms of ergodic capacity and average achievable throughput for device-to-device underlay cellular networks. We also suggest a two-phase scheme to optimize the ergodic capacity while minimizing the total power consumption.
• We investigate the modeling and analysis of simultaneous information and energy transfer in Internet of things and evaluate both transmission outage probability and power outage probability. Then we try to balance the trade-off between the outage performances by careful design of the power splitting ratio.
This research provides valuable insights related to the trade-offs between energy-conservation and system performance in 5G networks. Theoretical and simulation results help verify the performance of the proposed algorithms.
|
Page generated in 0.1052 seconds