• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 42
  • 25
  • 24
  • 20
  • 16
  • 16
  • 16
  • 16
  • 16
  • 15
  • 10
  • 5
  • 2
  • 2
  • Tagged with
  • 646
  • 646
  • 143
  • 100
  • 95
  • 80
  • 71
  • 64
  • 60
  • 59
  • 58
  • 54
  • 54
  • 54
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Mathematical modeling of diseases to inform health policy

Faissol, Daniel Mello 23 June 2008 (has links)
In this dissertation we present mathematical models that help answer health policy questions relating to HIV and Hepatitis C (HCV), and analyze bias in Markov models of disease progression. We begin by developing a Markov decision process model that examines the timing of testing and treatment for diseases with asymptomatic periods such as HCV. We explicitly consider secondary infections, false positives and negatives, and behavioral modification from information from test results. We derive sufficient conditions for testing and/or treating in a dynamic environment, i.e., when unscheduled patients arrive. We also develop a detailed simulation model for general testing and/or treating for HCV. A key finding is that the current policy recommendations on testing for HCV may be too restrictive, and that it is cost-effective to test the overall population if done at the appropriate times. The Markov models used in the study of HCV motivated the next topic where we examine bias in Markov models of diseases. We examine models in which the progression of the disease varies with severity and find sufficient conditions for bias to exist in models that do not allow for transition probabilities to change with disease severity. We apply the results to HCV and find that the bias is significant depending on the method used to aggregate the disease data. We close with a discussion on a specific question in HIV policy where we develop a Bernoulli process transmission model in which, for a given individual, each risky person-to-person contact is treated as an independent Bernoulli trial. Using the model and data from the Urban Men's Health Study, we estimate the affect that interventions at venues, namely bathhouses, in which high-risk behavior takes place would have on HIV transmission.
452

Random sampling of lattice configurations using local Markov chains

Greenberg, Sam 01 December 2008 (has links)
Algorithms based on Markov chains are ubiquitous across scientific disciplines, as they provide a method for extracting statistical information about large, complicated systems. Although these algorithms may be applied to arbitrary graphs, many physical applications are more naturally studied under the restriction to regular lattices. We study several local Markov chains on lattices, exploring how small changes to some parameters can greatly influence efficiency of the algorithms. We begin by examining a natural Markov Chain that arises in the context of "monotonic surfaces", where some point on a surface is sightly raised or lowered each step, but with a greater rate of raising than lowering. We show that this chain is rapidly mixing (converges quickly to the equilibrium) using a coupling argument; the novelty of our proof is that it requires defining an exponentially increasing distance function on pairs of surfaces, allowing us to derive near optimal results in many settings. Next, we present new methods for lower bounding the time local chains may take to converge to equilibrium. For many models that we study, there seems to be a phase transition as a parameter is changed, so that the chain is rapidly mixing above a critical point and slow mixing below it. Unfortunately, it is not always possible to make this intuition rigorous. We present the first proofs of slow mixing for three sampling problems motivated by statistical physics and nanotechnology: independent sets on the triangular lattice (the hard-core lattice gas model), weighted even orientations of the two-dimensional Cartesian lattice (the 8-vertex model), and non-saturated Ising (tile-based self-assembly). Previous proofs of slow mixing for other models have been based on contour arguments that allow us prove that a bottleneck in the state space constricts the mixing. The standard contour arguments do not seem to apply to these problems, so we modify this approach by introducing the notion of "fat contours" that can have nontrivial area. We use these to prove that the local chains defined for these models are slow mixing. Finally, we study another important issue that arises in the context of phase transitions in physical systems, namely how the boundary of a lattice can affect the efficiency of the Markov chain. We examine a local chain on the perfect and near-perfect matchings of the square-octagon lattice, and show for one boundary condition the chain will mix in polynomial time, while for another it will mix exponentially slowly. Strikingly, the two boundary conditions only differ at four vertices. These are the first rigorous proofs of such a phenomenon on lattice graphs.
453

Airline passengers' online search and purchase behaviors

Lee, Misuk 06 July 2009 (has links)
This paper studies airline customers' online search and purchase behaviors. Two fundamental aspects of online behavior are examined: (1) the link between search behavior and buying behavior and (2) the evolution of inter-temporal search and purchase decisions of strategic buyers. In the first study, we examine online customers' dynamic conversion behaviors using clickstream data. A new model based on Markov chains that incorporates discrete choices and decision-timing is proposed to capture key search effects on consumer decisions as well as dynamics of browsing behavior both within and across visits. Empirical results show that within-site search activities lead to strong consumer engagement and thus increase purchase and revisit propensities. Fit comparison between first and second order Markov chains allows us to conclude that consumer decisions are primarily influenced by the current search. Furthermore, we observe that consumers dynamically adjust their browsing behavior both within and across visits. The second study investigates the evolution of inter-temporal search and purchase decisions of strategic buyers. Risk neutral buyers follow simple behavioral rules based on future and current prices and options available. We show that the trade-off between waiting and purchasing will become less and less favorable to waiting. Price elasticity should therefore drop as departure date approaches. With stationary price distributions, search and purchase efforts increase with proximity to the deadline. We extend the base model to allow for price evolution and demand uncertainty. We find that increases in mean price and price dispersion may attenuate increasing propensities for search and purchase. We demonstrate our models through a logit estimation on a unique data set from a major online travel agency.
454

Chereme-based recognition of isolated, dynamic gestures from South African sign language with Hidden Markov Models.

Rajah, Christopher January 2006 (has links)
<p>Much work has been done in building systems that can recognize gestures, e.g. as a component of sign language recognition systems. These systems typically use whole gestures as the smallest unit for recognition. Although high recognition rates have been reported, these systems do not scale well and are computationally intensive. The reason why these systems generally scale poorly is that they recognize gestures by building individual models for each separate gesture / as the number of gestures grows, so does the required number of models. Beyond a certain threshold number of gestures to be recognized, this approach become infeasible. This work proposed that similarly good recognition rates can be achieved by building models for subcomponents of whole gestures, so-called cheremes. Instead of building models for entire gestures, we build models for cheremes and recognize gestures as sequences of such cheremes. The assumption is that many gestures share cheremes and that the number of cheremes necessary to describe gestures is much smaller than the number of gestures. This small number of cheremes then makes it possible to recognized a large number of gestures with a small number of chereme models. This approach is akin to phoneme-based speech recognition systems where utterances are recognized as phonemes which in turn are combined into words.</p>
455

Time-dependence in Markovian decision processes.

McMahon, Jeremy James January 2008 (has links)
The main focus of this thesis is Markovian decision processes with an emphasis on incorporating time-dependence into the system dynamics. When considering such decision processes, we provide value equations that apply to a large range of classes of Markovian decision processes, including Markov decision processes (MDPs) and semi-Markov decision processes (SMDPs), time-homogeneous or otherwise. We then formulate a simple decision process with exponential state transitions and solve this decision process using two separate techniques. The first technique solves the value equations directly, and the second utilizes an existing continuous-time MDP solution technique. To incorporate time-dependence into the transition dynamics of the process, we examine a particular decision process with state transitions determined by the Erlang distribution. Although this process is originally classed as a generalized semi-Markov decision process, we re-define it as a time-inhomogeneous SMDP. We show that even for a simply stated process with desirable state-space properties, the complexity of the value equations becomes so substantial that useful analytic expressions for the optimal solutions for all states of the process are unattainable. We develop a new technique, utilizing phase-type (PH) distributions, in an effort to address these complexity issues. By using PH representations, we construct a new state-space for the process, referred to as the phase-space, incorporating the phases of the state transition probability distributions. In performing this step, we effectively model the original process as a continuous-time MDP. The information available in this system is, however, richer than that of the original system. In the interest of maintaining the physical characteristics of the original system, we define a new valuation technique for the phase-space that shields some of this information from the decision maker. Using the process of phase-space construction and our valuation technique, we define an original system of value equations for this phasespace that are equivalent to those for the general Markovian decision processes mentioned earlier. An example of our own phase-space technique is given for the aforementioned Erlang decision process and we identify certain characteristics of the optimal solution such that, when applicable, the implementation of our phase-space technique is greatly simplified. These newly defined value equations for the phase-space are potentially as complex to solve as those defined for the original model. Restricting our focus to systems with acyclic state-spaces though, we describe a top-down approach to solution of the phase-space value equations for more general processes than those considered thus far. Again, we identify characteristics of the optimal solution to look for when implementing this technique and provide simplifications of the value equations where these characteristics are present. We note, however, that it is almost impossible to determine a priori the class of processes for which the simplifications outlined in our phase-space technique will be applicable. Nevertheless, we do no worse in terms of complexity by utilizing our phase-space technique, and leave open the opportunity to simplify the solution process if an appropriate situation arises. The phase-space technique can handle time-dependence in the state transition probabilities, but is insufficient for any process with time-dependent reward structures or discounting. To address such decision processes, we define an approximation technique for the solution of the class of infinite horizon decision processes whose state transitions and reward structures are described with reference to a single global clock. This technique discretizes time into exponentially distributed length intervals and incorporates this absolute time information into the state-space. For processes where the state-transitions are not exponentially distributed, we use the hazard rates of the transition probability distributions evaluated at the discrete time points to model the transition dynamics of the system. We provide a suitable reward structure approximation using our discrete time points and guidelines for sensible truncation, using an MDP approximation to the tail behaviour of the original infinite horizon process. The result is a finite-state time-homogeneous MDP approximation to the original process and this MDP may be solved using standard existing solution techniques. The approximate solution to the original process can then be inferred from the solution to our MDP approximation. / Thesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2008
456

Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov models

Xie, Li, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
In this thesis, we consider a robust state estimation problem for discrete-time, homogeneous, first-order, finite-state finite-alphabet hidden Markov models (HMMs). Based on Kolmogorov's Theorem on the existence of a process, we first present the Kolmogorov model for the HMMs under consideration. A new change of measure is introduced. The statistical properties of the Kolmogorov representation of an HMM are discussed on the canonical probability space. A special Kolmogorov measure is constructed. Meanwhile, the ergodicity of two expanded Markov chains is investigated. In order to describe the uncertainty of HMMs, we study probability distance problems based on the Kolmogorov model of HMMs. Using a change of measure technique, the relative entropy and the relative entropy rate as probability distances between HMMs, are given in terms of the HMM parameters. Also, we obtain a new expression for a probability distance considered in the existing literature such that we can use an information state method to calculate it. Furthermore, we introduce regular conditional relative entropy as an a posteriori probability distance to measure the discrepancy between HMMs when a realized observation sequence is given. A representation of the regular conditional relative entropy is derived based on the Radon-Nikodym derivative. Then a recursion for the regular conditional relative entropy is obtained using an information state method. Meanwhile, the well-known duality relationship between free energy and relative entropy is extended to the case of regular conditional relative entropy given a sub-[special character]-algebra. Finally, regular conditional relative entropy constraints are defined based on the study of the probability distance problem. Using a Lagrange multiplier technique and the duality relationship for regular conditional relative entropy, a finite horizon robust state estimator for HMMs with regular conditional relative entropy constraints is derived. A complete characterization of the solution to the robust state estimation problem is also presented.
457

Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov models

Xie, Li, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
In this thesis, we consider a robust state estimation problem for discrete-time, homogeneous, first-order, finite-state finite-alphabet hidden Markov models (HMMs). Based on Kolmogorov's Theorem on the existence of a process, we first present the Kolmogorov model for the HMMs under consideration. A new change of measure is introduced. The statistical properties of the Kolmogorov representation of an HMM are discussed on the canonical probability space. A special Kolmogorov measure is constructed. Meanwhile, the ergodicity of two expanded Markov chains is investigated. In order to describe the uncertainty of HMMs, we study probability distance problems based on the Kolmogorov model of HMMs. Using a change of measure technique, the relative entropy and the relative entropy rate as probability distances between HMMs, are given in terms of the HMM parameters. Also, we obtain a new expression for a probability distance considered in the existing literature such that we can use an information state method to calculate it. Furthermore, we introduce regular conditional relative entropy as an a posteriori probability distance to measure the discrepancy between HMMs when a realized observation sequence is given. A representation of the regular conditional relative entropy is derived based on the Radon-Nikodym derivative. Then a recursion for the regular conditional relative entropy is obtained using an information state method. Meanwhile, the well-known duality relationship between free energy and relative entropy is extended to the case of regular conditional relative entropy given a sub-[special character]-algebra. Finally, regular conditional relative entropy constraints are defined based on the study of the probability distance problem. Using a Lagrange multiplier technique and the duality relationship for regular conditional relative entropy, a finite horizon robust state estimator for HMMs with regular conditional relative entropy constraints is derived. A complete characterization of the solution to the robust state estimation problem is also presented.
458

Word hypothesis of phonetic strings using hidden Markov models /

Engbrecht, Jeffery W. January 1990 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1990. / Includes bibliographical references (leaves 51-53).
459

Context sensitive optical character recognition using neural networks and hidden Markov models /

Elliott, Steven C. January 1992 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1992. / Typescript. Includes bibliographical references.
460

Stochastic inventory control with partial demand observability

Ortiz, Olga L. January 2008 (has links)
Thesis (Ph. D.)--Industrial and Systems Engineering, Georgia Institute of Technology, 2008. / Committee Co-Chair: Alan L Erera; Committee Co-Chair: Chelsea C, White III; Committee Member: Julie Swann; Committee Member: Paul Griffin; Committee Member: Soumen Ghosh.

Page generated in 0.06 seconds