Spelling suggestions: "subject:"markovchain montecarlo c.method"" "subject:"markovchain montecarlo 20method""
1 |
A Note on the Folding CouplerHörmann, Wolfgang, Leydold, Josef January 2006 (has links) (PDF)
Perfect Gibbs sampling is a method to turn Markov Chain Monte Carlo (MCMC) samplers into exact generators for independent random vectors. We show that a perfect Gibbs sampling algorithm suggested in the literature is not always generating from the correct distribution. (author's abstract) / Series: Research Report Series / Department of Statistics and Mathematics
|
2 |
Practice-driven solutions for inventory management problems in data-scarce environmentsWang, Le 03 June 2019 (has links)
Many firms are challenged to make inventory decisions with limited data, and high customer service level requirements. This thesis focuses on heuristic solutions for inventory management problems in data-scarce environments, employing rigorous mathematical frameworks and taking advantage of the information that is available in practice but often ignored in literature. We define a class of inventory models and solutions with demonstrable value in helping firms solve these challenges.
|
3 |
Monte Carlo Integration Using Importance Sampling and Gibbs SamplingHörmann, Wolfgang, Leydold, Josef January 2005 (has links) (PDF)
To evaluate the expectation of a simple function with respect to a complicated multivariate density Monte Carlo integration has become the main technique. Gibbs sampling and importance sampling are the most popular methods for this task. In this contribution we propose a new simple general purpose importance sampling procedure. In a simulation study we compare the performance of this method with the performance of Gibbs sampling and of importance sampling using a vector of independent variates. It turns out that the new procedure is much better than independent importance sampling; up to dimension five it is also better than Gibbs sampling. The simulation results indicate that for higher dimensions Gibbs sampling is superior. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
4 |
A Note on Perfect Slice SamplingHörmann, Wolfgang, Leydold, Josef January 2006 (has links) (PDF)
Perfect slice sampling is a method to turn Markov Chain Monte Carlo (MCMC) samplers into exact generators for independent random variates. We show that the simplest version of the perfect slice sampler suggested in the literature does not always sample from the target distribution. (author's abstract) / Series: Research Report Series / Department of Statistics and Mathematics
|
5 |
Improved Perfect Slice SamplingHörmann, Wolfgang, Leydold, Josef January 2003 (has links) (PDF)
Perfect slice sampling is a method to turn Markov Chain Monte Carlo (MCMC) samplers into exact generators for independent random variates. The originally proposed method is rather slow and thus several improvements have been suggested. However, two of them are erroneous. In this article we give a short introduction to perfect slice sampling, point out incorrect methods, and give a new improved version of the original algorithm. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
6 |
貝氏曲線同步化與分類 / Bayesian Curve Registration and Classification李柏宏, Lee,Po- Hung Unknown Date (has links)
函數型資料分析為近年發展的統計方法。函數型資料是在一段特定時間上,我們只在離散的時間點上收集觀測值。例如:氣象觀測站所收集到的每月氣溫、雨量資料,即是一種常見的函數型資料。函數型資料主要有三種特色,共同趨勢性、觀測個體反應強度不同,觀測個體時間特色上的差異。本文研究主要是使用,Brumback與Lindstrom在2004所提出的自模型迴歸族(self-modeling)當作模型架構來處理函數型資料的趨勢性與個體反應強度。而為了處理函數型資料的時間差異性,我們在模型中加入時間轉換函數(time transformation function),處理函數型資料的時間差異性步驟,這個過程稱為同步化。經過同步化的處理後,能幫助研究者更清楚資料的特性。模型中除了時間轉換函數的部份,其餘模型中的參數我們是利用馬可夫鏈蒙地卡羅法中的Gibbs Sampling來進行參數的抽樣,並以取出的抽樣值來估計參數。時間轉換函數的部份,我們使用概似懲罰函數(penalized likelihood function)來估計時間轉換函數的參數部份。由於函數型資料擁有趨勢性,我們預期不同類別的資料,會呈現不同的趨勢性,我們將利用此一特色當做分類上的標準。
關鍵詞:函數型資料分析、曲線同步化、曲線區別分析、馬可夫鏈蒙地卡羅法。 / Functional data are random curves observed in a period of time at discrete time points.They often exhibit a common shape, but with variations in amplitude and phase across curves.To estimate the common shape,some adjustment for synchronization is often made,which is also known as time warping or curve registration.In this thesis,splines are used to model the warping functions and the common shape. Certain parameters are allowed to be random.For the estimation of the random parameters,priors are proposed so that samples from the posteriors can be obtained using Markov chain Monte Carlo methods.For the estimation of non-random parameters, a penalized likelihood approach is used. It is found via simulation studies that for a set of random curves with a common shape,the estimated common shape function looks like the true function up to a location-scale transform,and the curve alignment based on estimated time warping functions looks reasonable.For two groups of random curves which differ in the group common shape functions,synchronization also improves the discrimination between groups in some cases.
Key words: functional data analysis,curve registration,curve discrimination,markov chain monte carlo method.
|
7 |
Markovo grandinės Monte-Karlo metodo tyrimas ir taikymas / Study and application of Markov chain Monte Carlo methodVaičiulytė, Ingrida 09 December 2014 (has links)
Disertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu. / Markov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method.
Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text]
|
8 |
Study and application of Markov chain Monte Carlo method / Markovo grandinės Monte-Karlo metodo tyrimas ir taikymasVaičiulytė, Ingrida 09 December 2014 (has links)
Markov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method.
Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text] / Disertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu.
|
9 |
Transition Matrix Monte Carlo Methods for Density of States PredictionHaber, René 03 July 2014 (has links) (PDF)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau.
Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert.
Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System.
Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst.
Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.
|
10 |
Transition Matrix Monte Carlo Methods for Density of States PredictionHaber, René 20 June 2014 (has links)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau.
Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert.
Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System.
Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst.
Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.
|
Page generated in 0.0408 seconds