Spelling suggestions: "subject:"markowitz meanvariance"" "subject:"markowitz andvariance""
1 |
Sustainability for Portfolio OptimizationAnane, Asomani Kwadwo January 2019 (has links)
The 2007-2008 financial crash and the looming climate change and global warming have heightened interest in sustainable investment. But whether the shift is as a result of the financial crash or a desire to preserve the environment, a sustainable investment might be desirable. However, to maintain this interest and to motivate investors in indulging in sustainability, there is the need to show the possibility of yielding positive returns. The main objective of the thesis is to investigate whether the sustainable investment can lead to higher returns. The thesis focuses primarily on incorporating sustainability into Markowitz portfolio optimization. It looks into the essence of sustainability and its impact on companies by comparing different concepts. The analysis is based on the 30 constituent stocks from the Dow Jones industrial average or simply the Dow. The constituents stocks of the Dow, from 2007-12-31 to 2018-12-31 are investigated. The thesis compares the cumulative return of the Dow with the sustainable stocks in the Dow based on their environmental, social and governance (ESG) rating. The results are then compared with the Dow Jones Industrial Average denoted by the symbol (^DJI) which is considered as the benchmark for my analysis. The constituent stocks are then optimized based on the Markowitz mean-variance framework and a conclusion is drawn from the constituent stocks, ESG, environmental, governance and social asset results. It was realized that the portfolio returns for stocks selected based on their environmental and governance ratings were the highest performers. This could be due to the fact that most investors base their investment selection on the environmental and governance performance of companies and the demand for stocks in that category could have gone up over the period, contributing significantly to their performance.
|
2 |
Implementation of mean-variance and tail optimization based portfolio choice on risky assetsDjehiche, Younes, Bröte, Erik January 2016 (has links)
An asset manager's goal is to provide a high return relative the risk taken, and thus faces the challenge of how to choose an optimal portfolio. Many mathematical methods have been developed to achieve a good balance between these attributes and using di erent risk measures. In thisthesis, we test the use of a relatively simple and common approach: the Markowitz mean-variance method, and a more quantitatively demanding approach: the tail optimization method. Using active portfolio based on data provided by the Swedish fund management company Enter Fonderwe implement these approaches and compare the results. We analyze how each method weighs theunderlying assets in order to get an optimal portfolio.
|
3 |
Finanční optimalizace / Optimization in FinanceSowunmi, Ololade January 2020 (has links)
This thesis presents two Models of portfolio optimization, namely the Markowitz Mean Variance Optimization Model and the Rockefeller and Uryasev CVaR Optimization Model. It then presents an application of these models to a portfolio of clean energy assets for optimal allocation of financial resources in terms of maximum returns and low risk. This is done by writing GAMS programs for these optimization problems. An in-depth analysis of the results is conducted, and we see that the difference between both models is not very significant even though these results are data-specific.
|
4 |
Methods of optimizing investment portfoliosSeepi, Thoriso P.J. January 2013 (has links)
>Magister Scientiae - MSc / In this thesis, we discuss methods for optimising the expected rate of return of a
portfolio with minimal risk. As part of the work we look at the Modern Portfolio
Theory which tries to maximise the portfolio's expected rate of return for a cer-
tain amount of risk. We also use Quadratic Programming to optimise portfolios.
Generally it is recognised that portfolios with a high expected return, carry higher
risk. The Modern Portfolio Theory assists when choosing portfolios with the lowest
possible risk. There is a nite number of assets in a portfolio and we therefore want
to allocate them in such a way that we're able to optimise the expected rate of
return with minimal risk. We also use the Markowian approach to allocate these
assets. The Capital Asset Pricing Model is also used, which will help us to reduce
our e cient portfolio to a single portfolio. Furthermore we use the Black-Litterman
model to try and optimise our portfolio with a view to understanding the current
market conditions, as well as considering how the market will perform in the future.
An additional tool we'll use is Value at Risk. This enables us to manage the market
risk. To this end, we follow the three basic approaches from Jorion [Value at Risk.
USA: McGraw-Hills, 2001]. The Value at Risk tool has become essential in calcu-
lating a portfolio's risk over the last decade. It works by monitoring algorithms in
order to nd the worst possible scenarios within the portfolio. We perform several
numerical experiments in MATLAB and Microsoft Excel and these are presented in
the thesis with the relevant descriptions.
|
5 |
Robust portfolio optimization with Expected Shortfall / Robust portföljoptimering med ESIsaksson, Daniel January 2016 (has links)
This thesis project studies robust portfolio optimization with Expected Short-fall applied to a reference portfolio consisting of Swedish linear assets with stocks and a bond index. Specifically, the classical robust optimization definition, focusing on uncertainties in parameters, is extended to also include uncertainties in log-return distribution. My contribution to the robust optimization community is to study portfolio optimization with Expected Shortfall with log-returns modeled by either elliptical distributions or by a normal copula with asymmetric marginal distributions. The robust optimization problem is solved with worst-case parameters from box and ellipsoidal un-certainty sets constructed from historical data and may be used when an investor has a more conservative view on the market than history suggests. With elliptically distributed log-returns, the optimization problem is equivalent to Markowitz mean-variance optimization, connected through the risk aversion coefficient. The results show that the optimal holding vector is almost independent of elliptical distribution used to model log-returns, while Expected Shortfall is strongly dependent on elliptical distribution with higher Expected Shortfall as a result of fatter distribution tails. To model the tails of the log-returns asymmetrically, generalized Pareto distributions are used together with a normal copula to capture multivariate dependence. In this case, the optimization problem is not equivalent to Markowitz mean-variance optimization and the advantages of using Expected Shortfall as risk measure are utilized. With the asymmetric log-return model there is a noticeable difference in optimal holding vector compared to the elliptical distributed model. Furthermore the Expected Shortfall in-creases, which follows from better modeled distribution tails. The general conclusions in this thesis project is that portfolio optimization with Expected Shortfall is an important problem being advantageous over Markowitz mean-variance optimization problem when log-returns are modeled with asymmetric distributions. The major drawback of portfolio optimization with Expected Shortfall is that it is a simulation based optimization problem introducing statistical uncertainty, and if the log-returns are drawn from a copula the simulation process involves more steps which potentially can make the program slower than drawing from an elliptical distribution. Thus, portfolio optimization with Expected Shortfall is appropriate to employ when trades are made on daily basis. / Examensarbetet behandlar robust portföljoptimering med Expected Shortfall tillämpad på en referensportfölj bestående av svenska linjära tillgångar med aktier och ett obligationsindex. Specifikt så utvidgas den klassiska definitionen av robust optimering som fokuserar på parameterosäkerhet till att även inkludera osäkerhet i log-avkastningsfördelning. Mitt bidrag till den robusta optimeringslitteraturen är att studera portföljoptimering med Expected Shortfall med log-avkastningar modellerade med antingen elliptiska fördelningar eller med en norma-copul med asymmetriska marginalfördelningar. Det robusta optimeringsproblemet löses med värsta tänkbara scenario parametrar från box och ellipsoid osäkerhetsset konstruerade från historiska data och kan användas när investeraren har en mer konservativ syn på marknaden än vad den historiska datan föreslår. Med elliptiskt fördelade log-avkastningar är optimeringsproblemet ekvivalent med Markowitz väntevärde-varians optimering, kopplade med riskaversionskoefficienten. Resultaten visar att den optimala viktvektorn är nästan oberoende av vilken elliptisk fördelning som används för att modellera log-avkastningar, medan Expected Shortfall är starkt beroende av elliptisk fördelning med högre Expected Shortfall som resultat av fetare fördelningssvansar. För att modellera svansarna till log-avkastningsfördelningen asymmetriskt används generaliserade Paretofördelningar tillsammans med en normal-copula för att fånga det multivariata beroendet. I det här fallet är optimeringsproblemet inte ekvivalent till Markowitz väntevärde-varians optimering och fördelarna med att använda Expected Shortfall som riskmått används. Med asymmetrisk log-avkastningsmodell uppstår märkbara skillnader i optimala viktvektorn jämfört med elliptiska fördelningsmodeller. Därutöver ökar Expected Shortfall, vilket följer av bättre modellerade fördelningssvansar. De generella slutsatserna i examensarbetet är att portföljoptimering med Expected Shortfall är ett viktigt problem som är fördelaktigt över Markowitz väntevärde-varians optimering när log-avkastningar är modellerade med asymmetriska fördelningar. Den största nackdelen med portföljoptimering med Expected Shortfall är att det är ett simuleringsbaserat optimeringsproblem som introducerar statistisk osäkerhet, och om log-avkastningar dras från en copula så involverar simuleringsprocessen flera steg som potentiellt kan göra programmet långsammare än att dra från en elliptisk fördelning. Därför är portföljoptimering med Expected Shortfall lämpligt att använda när handel sker på daglig basis.
|
Page generated in 0.058 seconds