Spelling suggestions: "subject:"marqueurs dde surface"" "subject:"marqueurs dee surface""
1 |
Molecular mechanisms of normal erythropoiesis / Mécanismes moléculaires de l’érythropoièse normaleCico, Alba 25 September 2017 (has links)
Un être humain adulte produit environ deux millions d’érythrocytes par seconde, à travers un processus connu sous le nom d’érythropoïèse. L’érythropoïèse est contrôlée par une balance entre prolifération et différenciation finement régulée. L’expression des gènes impliqués dans ces deux processus distincts, est régulée extrinsèquement (cytokines) et intrinsèquement (microenvirennement métabolique, facteurs de transcription). Les facteurs de transcription, fonctionnent sous forme de complexes multiprotéiques et contrôlent l’activité transcriptionnelle des cellules. Parmi eux, le complexe LDB1 joue un rôle clé dans la régulation de la balance prolifération/différenciation pendant l’érythropoïèse, puisqu’il contrôle l’expression des gènes impliquées dans ces deux processus. Au cours de mon doctorat, nous avons d’abord caractérisé les mécanismes moléculaires de la “pré-activation” des gènes de différenciation, également nommés marqueurs erythroides, dans les progéniteurs erythroides immatures. La pré-activation, est un état dans lequel, les gènes sont exprimés à un niveau basal très bas, permissif pour une activation significative pendant la différenciation. Nous avons ainsi montré que les répresseurs : ETO2, IRF2BP2 et NCOR1, interagissent avec le complexe LDB1, et lient ensemble les gènes des marqueurs erythroides et les répriment. Au cours de l’érythropoïèse, ces corépresseurs sont déstabilisés et LDB1 agit alors comme un activateur. En ce qui concerne les gènes de prolifération, nous avons observé que le complexe LDB1 est déstabilisé au niveau de ces loci pendant l’érythropoïèse. Afin d’étudier les mécanismes moléculaires de la répression génique des gènes de prolifération au cours de l’érythropoïèse, nous avons choisi d’étudier Myb, une cible du complexe LDB1, étudié auparavant dans le laboratoire. Nous avons testé trois facteurs : ZEB1, OGT et RNF12, en tant que candidats dans la répression de Myb. Nous avons montré que RNF12 est le seul facteur intervenant dans la transcription de Myb. RNF12 régule Myb probablement par une modification de complexes épigénétiques. / Every second about 2 million erythrocytes are produced in the adult human body, through a process called erythropoiesis. Erythropoiesis is controlled by a highly regulated balance between proliferation and differentiation. Expression of genes responsible for cell proliferation and differentiation is controlled external (such as cytokines) and internal (such as metabolic microenvironment and transcription factors). Transcription factors bind DNA and recruit co-factors generating transcriptional complexes. The LDB1 complex has a key role in the balance between erythroid proliferation vs. differentiation, since it regulates genes involved in both processes. During my Ph.D., we investigated the molecular mechanisms that LDB1 employs to regulate genes with divergent function. We first showed that in erythroid progenitors, differentiating genes, also known as erythroid markers, are primed. Gene priming consists of genes expressed in low basal but significant levels in progenitors, which can rapidly be activated during differentiation. We showed that in progenitors, ETO2, IRF2BP2 and NCOR1, bind the LDB1 complex therefore generating a priming complex. During differentiation, binding of the repressive (ETO2-IRF2BP2-NCOR1) co-factors to the LDB1 complex, is destabilized and genes become active. In genes involved in erythroid proliferation, we observed that LDB1 is destabilized, a feature leading to gene silencing. We used Myb, as a model of gene silencing in the context of regulation by the LDB1 complex. We tested three transcription factors: ZEB1, OGT and RNF12, as candidates in gene silencing. Among these factors, only RNF12 regulates Myb expression, probably through modifications of epigenetic silencers (Polycomb/MLL).
|
2 |
Characterization of ex vivo expanded human hematopoietic stem and progenitor cellsAnsari, Unain 04 1900 (has links)
Les cellules souches hématopoïétiques (CSH) sont des cellules souches adultes, responsables du maintien du système sanguin tout au long de la vie des vertébrés. Les CSH sont des cellules multipotentes spécialisées qui possèdent deux propriétés principales : leur capacité à se différencier en de multiples lignées et leur capacité à créer d'autres cellules souches (c'est-à-dire l'autorenouvellement). Grâce à ces caractéristiques, les CSH ont un énorme potentiel thérapeutique. En effet, la transplantation de CSH constitue à ce jour une option de choix pour le traitement de plusieurs maladies et troubles hématologiques. Les CSH ne se retrouvent que dans certains échantillons biologiques comme la moelle osseuse, les cellules mobilisées de la moelle osseuse dans le sang périphérique ou les cellules de sang de cordon ombilical. Les applications cliniques des CSH sont souvent limitées en raison de leur faible fréquence dans les échantillons biologiques, c’est pourquoi leur expansion ex vivo est un domaine de recherche en plein essor. Des approches basées sur des petites molécules pour amplifier le nombre les cellules couches ex vivo ont été testées avec succès pour permettre la prolifération des cellules et freiner leur différentiation. Notre groupe a contribué à ce domaine en identifiant la petite molécule UM171 qui peut amplifier les CSH ex vivo par reprogrammation épigénétique. Dans le cadre des efforts d’expansion ex vivo des CSH, un obstacle majeur est la caractérisation des cellules qui ont proliféré ex vivo afin d’évaluer de façon exhaustive le potentiel des greffons pour des applications ultérieures. La caractérisation phénotypique des CSH amplifiées ex vivo est une approche prometteuse pour aider à isoler et à purifier les cellules souches. Les travaux de cette thèse explorent l'association de l'immunophénotype à la fonctionnalité des cellules souches pour nous aider à définir l'hétérogénéité des cellules amplifiées. Au chapitre 2, en utilisant un profilage de cellules amplifiées basée sur le transcriptome, nous avons pu identifier CEACAM1 comme un nouveau marqueur fonctionnel des CSH. Concomitamment, au chapitre 3, nous appliquons une approche alternative basée sur le protéome de la surface cellulaire pour aider à caractériser le phénotype des cellules souches et progénitrices hématopoïétiques (CSPH) amplifiées ex vivo afin d'identifier GPA33 en comme marqueur probable de CSH. Les marqueurs de surface compatibles avec la culture constituent un excellent outil pour un isolement prospectif rapide et des manipulations in vitro et in vivo supplémentaires pour permettre une meilleure compréhension de la biologie des cellules souches. La caractérisation des HSPC expansées ex vivo est donc une tentative de combler le fossé et de permettre des stratégies thérapeutiques améliorées. / Hematopoietic stem cells (HSCs) are responsible for maintaining the blood system throughout the lifespan of vertebrates. HSCs are specialized multipotent cells that have two main properties – their ability to differentiate into multiple lineages and their ability to create more stem cells (i.e. self-renewal). Due to these special abilities, HSCs have tremendous therapeutic potential. HSCs thus to date are the best curative measure against most hematological malignancies and disorders. HSCs occur in limited frequency and can be found only from certain conserved sources like the bone marrow or mobilized cells from the bone marrow in the peripheral blood or umbilical cord blood cells. Clinical applications of HSCs are often restricted due to their low occurring frequencies, therefore ex vivo expansion is a growing research field. Small molecule-based approaches to expand stem cells ex vivo have been successfully tested to allow for proliferation of cells by curbing their differentiation. Our group has contributed to this field by the identification of the small molecule UM171 which can expand hematopoietic stem and progenitor cells (HSPCs) ex vivo via epigenetic reprogramming. To expand HSPCs ex vivo a major hurdle is the proper characterization of the ex vivo expanded cells to evaluate the full potential of grafts for further downstream applications. Phenotypic dissociation of ex vivo expanded HSPCs is a prospective tool to help isolate and purify stem cells. Identification of culture-compatible surface markers is therefore the first step to help characterize the ex vivo expanded cells. The work in this thesis explores the association of immunophenotype to the functionality of stem cells to help us delineate the heterogeneity of expanded cells. In Chapter 2, using transcriptome-based interrogation of expanded cells, we were able to identify CEACAM1 as a novel functional marker of HSCs. Whereas, in Chapter 3 we apply an alternative cell surface proteome-based approach to help characterize the phenotype of ex vivo expanded HSPCs to identify GPA33 as a probable HSC marker. Culture-compatible surface markers make for an excellent tool for rapid prospective isolation and additional in vitro and in vivo manipulations to allow a better understanding of stem cell biology. Characterization of ex vivo expanded HSPCs is thus an attempt to help bridge the gap and allow for enhanced therapeutic strategies.
|
Page generated in 0.0584 seconds