• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 246
  • 155
  • 27
  • 25
  • 11
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 842
  • 215
  • 213
  • 207
  • 169
  • 164
  • 155
  • 139
  • 134
  • 127
  • 124
  • 118
  • 116
  • 103
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Static and Dynamic Behavior of Reinforced Masonry : Experimental and Analytical Investigations

Anant, Joshi Amrut January 2015 (has links) (PDF)
The most common form of dwellings in rural and semi-urban areas of India and other developing countries around the globe are one/two storey unreinforced masonry (URM) buildings. It is well known that such masonry buildings are most vulnerable during earthquakes. Out-of-plane flexural failures of walls are primarily responsible for collapse of URM buildings during an earthquake. The seismic performance of such buildings can be improved by reinforcing masonry walls in the horizontal and vertical directions with materials like steel, bamboo or fiber reinforced polymers (FRP). It is fairly easy to reinforce masonry in the horizontal direction by embedding the reinforcement in the bed joints of masonry construction. However, in the vertical direction, the reinforcement is generally provided in the cavities of hollow masonry units, which are grouted after placing the reinforcement. Even though the in-plane performance of masonry walls is enhanced with such a reinforcing technique, it still falls short in resisting out-of-plane lateral loads, as the vertical reinforcement is located close to neutral axis of bending. Hence, a novel technique of reinforcing masonry in the vertical direction on both the faces of the wall called containment reinforcement is proposed recently. Containment reinforcement improves ductility, energy dissipation and prevents overturning failure due to out-of-plane loading. The present study examines the role of containment reinforcement in improving out-of-plane / in-plane behavior of masonry. The research program consisted of characterizing the physical properties of the constituent materials of reinforced masonry, namely stabilized earth blocks, cement-soil-sand (1:1:6) mortar and steel and FRP reinforcement. The strength and elastic properties of masonry assemblages under compression, flexure and shear have been determined. The flexural behavior of three types of reinforced masonry assemblages namely; stretcher bond, English bond and rat-trap bond masonry beams under monotonic and reversed cyclic loading test protocols have been examined. The beams were reinforced with steel, Glass FRP (GFRP) and Carbon FRP (CFRP) materials. In the monotonic test protocol the moment-curvature relationships and ductility for each type of masonry beams were obtained. In the cyclic test protocols, the hysteretic behavior, energy dissipation and equivalent viscous damping characteristics were obtained. The shear behavior of unreinforced and reinforced masonry panels under diagonal tension (shear) was examined through monotonic and cyclic loading test protocols. A simple and cost effective device for producing horizontal to and fro motion to imitate earthquake ground motions, called shock table test facility, has been designed. The table platform is mounted on four wheels and moves on rails. The table is put into the motion through pendulum impacts. The table motion characteristics have been obtained using the parameters used to describe the earthquake ground motions like amplitude, frequency content, duration of the motion and mixed parameters. The parameters of the shock table motion have been compared with few of the recorded earthquake ground motions to evaluate the effectiveness of shock table testing protocol for examining the dynamic performance of scaled masonry building models. The performance of two half scaled containment reinforced masonry building models subjected to base motions provided through shock table and conventional shaking table was evaluated. The dynamic properties of masonry, responses and failure patterns were obtained. A non-linear finite element (FE) model was developed and calibrated using the experimental data generated in the flexural and shear testing of reinforced and unreinforced masonry beams and panels. The FE model was further used for analysis of half scale masonry building model tested on shock table and recalibrated by comparing responses of numerical model with experimentally measured responses. Furthermore, the finite element model was used to assess the performance of two storey unreinforced and containment reinforced symmetric/asymmetric masonry buildings subjected to a series of earthquake ground motions of increasing severity. The studies conducted conclude that the masonry with containment reinforcement was effective in mitigating seismic risks of masonry buildings in moderate to severe seismic regions. The provision of containment reinforcement significantly improved equivalent hysteretic damping at design displacement and offered excellent ductility to masonry elements. The existing construction practice can easily accommodate the provision of containment reinforcement with little modification to the construction sequence. The extra effort in construction does commensurate with the enhancement in the seismic performance of the masonry buildings.
42

Lateral strength of zero bond masonry walls subjected to wind loads

Schulze, Peter, peter.schulze@deakin.edu.au January 1978 (has links)
Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a ‘half-bond’ or above a third point to form a ‘third-bond’. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure. Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units. This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression. These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment. The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.
43

Evaluation of elastomeric polymers used for external reinforcement of masonry walls subjected to blast /

Thornburg, Danica Leigh. January 2004 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2004. / Printout. Includes bibliographical references (leaves 264-266). Also available online.
44

Characteristics Of Soil-Cement Blocks And Soil-Cement Block Masonry

Lal, Richardson 12 1900 (has links) (PDF)
No description available.
45

Advancements in arch analysis and design during the Age of Enlightenment

Garrison, Emily January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / Prior to the Age of Enlightenment, arches were designed by empirical rules based off of previous successes or failures. The Age of Enlightenment brought about the emergence of statics and mechanics, which scholars promptly applied to masonry arch analysis and design. Masonry was assumed to be infinitely strong, so the scholars concerned themselves mainly with arch stability. Early Age of Enlightenment scholars defined the path of the compression force in the arch, or the shape of the true arch, as a catenary, while most scholars studying arches used statics with some mechanics to idealize the behavior of arches. These scholars can be broken into two categories, those who neglected friction and those who included it. The scholars of the first half of the 18th century understood the presence of friction, but it was not able to be quantified until the second half of the century. The advancements made during the Age of Enlightenment were the foundation for structural engineering as it is known today. The statics and mechanics used by the 17th and 18th century scholars are the same used by structural engineers today with changes only in the assumptions made in order to idealize an arch. While some assumptions have proved to be incorrect, many correctly interpreted behavior and were able to formulate equations for design and analysis that were successfully used to create arches that were structurally sound and more efficient than arches designed by empirical methods. This insight into design during the 18th and 19th centuries can help modern engineers better analyze and restore arches from this era and protect our architectural and engineering history.
46

Large scale testing of drystone retaining structures

Mundell, Chris January 2009 (has links)
Drystone walls have been used extensively around the world as earth retaining structures wherever suitable stone is found. Commonly about 0.6m thick (irrespective of height), there are about 9000km of drystone retaining walls on the UK road network alone, mostly built in the 19th and early 20th centuries, with an estimated replacement value in excess of £1 billion[1]. Drystone wall design is traditionally empirical, based on local knowledge of what has worked in the past. Methods vary from region to region, driven by both custom and the nature of the materials available. Design is not necessarily optimised, and includes unknown margins of safety. There is a recognised need for guidance on the assessment and maintenance of dry stone retaining walls, as no suchdocumentscurrentlyexist. Thisthesisdocumentstheconstructionofaseriesoffull-scaletestsdesignedto provide sufficient information to validate current theoretical and numerical analysis techniques. The development of a unique test rig is detailed, in addition to the testing regime and results from a programme of five 2.5m high drystone retaining walls. The walls were subjected to localised surcharging and foundation movements, recreating the conditions that many in-situ walls are subject to. Movements such as toppling, bulging and sliding were observed, and recorded using a broad range of instrumentation. This has provided high quality, quantitative data relating to the factors which influence these mechanisms, and their affect on wall stability. Also documented are the associated laboratory tests which have been conducted to determine the mechanical properties of backfill and the walls themselves, as well as the manner in which they interact together. To assist in the analysis of these full-scale tests, a limit equilibrium program has been developed. This package allows the rapid generation of a wall of any size and constructed with any materials. The limit equilibrium program has then been used in conjunction with the data from the full-scale and laboratory tests to analyse observed drystone wall behaviour. These include the phenomena of toppling, bulging, bursting, sliding and individual block rotation. In each case, the underlying causes of such movements have been determined, and the critical parametersidentified.
47

Blast Retrofit of Unreinforced Masonry Walls Using ECC Shotcrete

Gandia, Jordan 15 April 2019 (has links)
Blast loads on buildings can originate from accidental explosions or from targeted attacks. Design against blast loads has become an increasingly important topic due to the current political climate. Unfortunately, many older buildings are constructed with unreinforced masonry (URM) walls which are particularly susceptible to out of plane failures caused by blast loads. One solution to increase the safety of these buildings is to retrofit them with advanced materials that can increase their out-of-plane stiffness and resistance. This thesis investigates the potential of using a high-performance shotcrete as a retrofit system for URM walls against blast effects. The shotcrete used in this study is made from Engineered Cementitious Composite (ECC), a special type of fiber-reinforced cementitious material, with high ductility and high energy-absorption capacity. The ECC shotcrete replaces aggregates with synthetic microfibers to increase tensile strength and ductility. A welded wire mesh was embedded in the shotcrete to provide ductile behavior. The testing program includes a total of six large-scale unreinforced masonry wall specimens. Two walls were constructed using concrete masonry unit (CMU) blocks to be retrofitted. The first specimen was built as an infill wall, experiencing no axial load, while the second specimen was built as a load bearing wall, with 10% axial load. Four more walls were built out of stone blocks. Two of the stone walls were controls: one infill and one load bearing (4% axial load). The other two stone walls were retrofit with the shotcrete system: one infill and one load bearing (4% axial load). The blast loads were simulated using the University of Ottawa’s Shock Tube. The walls were restrained at the top and bottom with a shear restraint to induce one way bending. Pressure, displacement and strain data were acquired with the use of pressure gauges, LVDT’s, strain gauges and cameras. The specimens were subjected to gradually increasing blast pressures until failure. The performance of the specimens was observed by analyzing the displacement, crack widths, fragmentation and failure mode. The results indicate the benefits of using ECC shotcrete as a retrofit system. The displacements of the retrofit walls were very small compared to the control walls, and fragments were limited. The specimens with axial load were found to have increased resistance. While the failure mode was brittle for the retrofit walls, this can be avoided with the use of a mesh with a larger area of steel. A SDOF analysis was performed to predict the blast response of the test walls. The analysis was done by generating resistance functions for the walls through analytical models. The analysis was found to agree reasonably well with the experimental data.
48

INPLANE RESPONSE OF WIDE SPACED REINFORCED MASONRY SHEAR WALLS

Haider, Waheed, haiderw@connellhatch.com January 2007 (has links)
Wide spaced reinforced masonry (WSRM) walls that contain vertical reinforced cores at horizontal spacing up to 2000mm are commonly used in high wind zones of Australia although their inplane shear resistance is not well understood. This thesis aims at providing better insight into the behaviour of WSRM walls subjected to inplane lateral loading through experimental and numerical investigations. The interactions between the unreinforced masonry (URM) panels and vertical reinforced cores are first determined using an elastic finite element analysis and the potential failure paths hypothesized. The hypotheses are then validated using a series of full-scale WSRM and Non-WSRM wall tests under monotonic and cyclic lateral loading by keeping the spacing between the vertical reinforced cores as the main design variable. Load-displacement response of these shear walls indicates that the current classification of the WSRM in AS3700 (2001) as those walls containing vertical reinforced grouted cores at 2000mm maximum spacing is appropriate. A finite element model (FEM) based on an explicit solution algorithm is developed for predicting the response of the masonry shear walls tested under static loading. The FEM has adopted macroscopic masonry failure criteria and flow rules, damaged plasticity model for grout and tension-only model for reinforcing bars reported in the literature, and predicted crack opening and post-peak load behaviour of the shear walls. By minimising the kinetic energy using appropriate time scaling, the FEM has provided reasonable and efficient prediction of load flow, crack patterns and load–displacement curves of the shear walls. The FEM is further validated using full-scale tests on WSRM walls of aspect ratios and pre-compression different to that tested before. The validated FEM is used to examine the appropriateness of the prescriptive design details for WSRM concrete masonry shear walls provided in AS3700 (2001) allowing for a large scatter in material properties. It is shown that the inplane shear capacity formula provided in AS3700 (2001) for squat WSRM shear walls is non-conservative.
49

Static evaluation of the out-of-plane behavior of URM infill walls utilizing modern blast retrofit systems

Hrynyk, Trevor D. January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 4, 2007) Includes bibliographical references (p. 184-186).
50

Performance of reinforcement lap splices in concrete masonry

De Vial, Christophe. January 2009 (has links) (PDF)
Thesis (M.S. in in civil engineering)--Washington State University, December 2009. / Title from PDF title page (viewed on Jan. 26, 2010). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 42).

Page generated in 0.0412 seconds