• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un matériau thermoplastique biodégradable et hydrosoluble à base d'une protéine du lait

Belyamani, Imane 08 November 2011 (has links) (PDF)
La biomasse représente l'une des principales alternatives à l'utilisation du pétrole dans la plasturgie. Grâce à leurs propriétés fonctionnelles, les caséinates sont une matière première prometteuse pour la fabrication de films plastiques pour des applications dans l'emballage biodégradable et hydrosoluble. La transformation du caséinate de sodium par les techniques habituellement utilisées dans la plasturgie a été démontrée. Des extrudats de caséinate plastifié au glycérol ont été obtenus au moyen d'une extrudeuse bi-vis corotative. La caractérisation physico-chimique du matériau obtenu a confirmé la thermostabilité de cette protéine et a montré la dépendance du comportement du matériau vis-à-vis de l'humidité ambiante. Pour une variation du taux d'Humidité Relative, de 40 à 90% et une augmentation de la concentration du glycérol, plastifiant hygroscopique, le matériau passe d'un état vitreux (rigide) à un état caoutchouteux (mou). Des films fins ont été ensuite réalisés, à partir des extrudats thermoplastiques, par extrusion gonflage. La perméabilité à la vapeur d'eau des films de caséinate de sodium a été étudiée et a montré que ces matériaux sont de mauvaises barrières à l'humidité. La deuxième partie a été consacré à l'étude de mélanges caséinate de sodium/caséinate de calcium d'un côté et caséinate de sodium/PBAT de l'autre. Le mélange des deux caséinates a permis d'augmenter la tenue mécanique du mélange, à partir de 50% de caséinate de calcium, et de retarder le transfert hydrique à travers le film. Dans le même sens, l'ajout du PBAT, a augmenté jusqu'à deux fois plus, le module d'Young des mélanges mais a baissé la résistance au transfert d'humidité du film à cause de l'incompatibilité des deux polymères.
2

Développement d'un matériau thermoplastique biodégradable et hydrosoluble à base d'une protéine du lait / Synthesis of a thermoplastic biodegradable and water soluble material based on a milk protein

Belyamani, Imane 08 November 2011 (has links)
La biomasse représente l’une des principales alternatives à l’utilisation du pétrole dans la plasturgie. Grâce à leurs propriétés fonctionnelles, les caséinates sont une matière première prometteuse pour la fabrication de films plastiques pour des applications dans l’emballage biodégradable et hydrosoluble. La transformation du caséinate de sodium par les techniques habituellement utilisées dans la plasturgie a été démontrée. Des extrudats de caséinate plastifié au glycérol ont été obtenus au moyen d’une extrudeuse bi-vis corotative. La caractérisation physico-chimique du matériau obtenu a confirmé la thermostabilité de cette protéine et a montré la dépendance du comportement du matériau vis-à-vis de l’humidité ambiante. Pour une variation du taux d’Humidité Relative, de 40 à 90% et une augmentation de la concentration du glycérol, plastifiant hygroscopique, le matériau passe d’un état vitreux (rigide) à un état caoutchouteux (mou). Des films fins ont été ensuite réalisés, à partir des extrudats thermoplastiques, par extrusion gonflage. La perméabilité à la vapeur d’eau des films de caséinate de sodium a été étudiée et a montré que ces matériaux sont de mauvaises barrières à l’humidité. La deuxième partie a été consacré à l’étude de mélanges caséinate de sodium/caséinate de calcium d’un côté et caséinate de sodium/PBAT de l’autre. Le mélange des deux caséinates a permis d’augmenter la tenue mécanique du mélange, à partir de 50% de caséinate de calcium, et de retarder le transfert hydrique à travers le film. Dans le même sens, l’ajout du PBAT, a augmenté jusqu’à deux fois plus, le module d’Young des mélanges mais a baissé la résistance au transfert d’humidité du film à cause de l’incompatibilité des deux polymères / Biomass is one of the main alternatives to the use of oil in plastics field. Due to their various functional properties, caseinates are considered as an interesting raw material for making biodegradable and water-soluble packaging. The transformation of sodium caseinate by the processes used for synthetic plastics industry has been demonstrated. A corotating twin-screw extruder was used to get glycerol plasticized caseinate pellets. The physicochemical properties of the obtained material have confirmed the thermal stability of this protein and demonstrated the influence of surrounding moisture on material behavior. With the Relative Humidity varying from 40 to 90% and increasing the glycerol content, an hydrous plasticizer, the mechanical properties of sodium caseinate based materials changed from those of glassy (rigid) to rubbery (soft) plastics. The pellets were then taken over to make film using a blown-film extruder. The water vapour permeability of blown film was studied and showed that sodium caseinate based films are a poor moisture barrier. The second part dealt with the sodium caseinate blend. Sodium caseinate/calcium caseinate and sodium caseinate/PBAT blends was performed. Adding calcium caseinate, started from 50%, improved the mechanical properties and delayed hydrous transfer through the film. Concerning the sodium caseinate/PBAT blends, adding PBAT increased until twice more the material’s Young modulus but decreased the moisture transfer resistance because of the incompatibility between the two polymers
3

Développement de biomatériaux nanofibreux/microporeux actifs pour la régénération osseuse / Smart nanofibrous electrospun membrane for bone regeNEration

Ferrand, Alice 30 March 2012 (has links)
Les nanotechnologies sont en train de révolutionner le domaine biomédical et plus particulièrement l’ingénierie tissulaire. Elles permettent aujourd’hui, non seulement de réparer mais aussi de régénérer les tissus. Cette nanomédecine régénérative est particulièrement adaptée pour répondre aux besoins importants liés aux maladies dégénératives, au vieillissement et aux traumatismes.Mon travail de thèse s’inscrit dans ce contexte et concerne l’élaboration de biomatériaux nanofibreux et microporeux actifs pour la régénération osseuse. Notre objectif essentiel est de réaliser un implant biodégradable nanostructuré permettant d’accélérer la réparation du tissu osseux. Notre stratégie innovante repose non seulement sur la mise en oeuvre de membranes par électrospinning mais aussi sur leur fonctionnalisation par des facteurs de croissance. Cette fonctionnalisation originale a consisté à enrober ces principes actifs dans des nanoréservoirs en utilisant la technique multicouche de polyélectrolytes. Des membranes de polycaprolactone (PCL) nanofibreuses et microporeuses ont été obtenues par électrospinning puis les fibres ont été enrobées de réservoirs contenant le facteur ostéoinducteur, la protéine morphogénique osseuse 2 (BMP-2). L’induction osseuse engendrée par ces réservoirs actifs a été mise en évidence in vitro après culture d’ostéoblastes humains primaires. Des expérimentations in vivo chez la souris ont permis de confirmer l’accélération de la régénération osseuse grâce à ces nanoréservoirs.Cette même stratégie a été validée in vivo, chez la souris, en utilisant des membranes de collagène d’origine animal commerciales utilisées en clinique. L’activité de ces membranes fonctionnalisées par des nanoréservoirs de BMP-2 est en cours d’analyse dans le cadre de tests précliniques pour une application maxillofaciale et parodontale. / Nanobiotechnology enables the emergence of entirely new classes of bioactive devices intended for targeted intracellular delivery for more efficiency and less toxicities. Tissue engineering is an interdisciplinary field that has attempted to implement a variety of processing methods for synthetic and natural polymers to fabricate tissue and organ regeneration scaffolds.We report here the first demonstration of bone regeneration by using a strategy based on a synthetic nanostructured membrane. This electrospun membrane is manufactured by using a FDA approved polymer, PCL, (polycaprolactone), and functionalized with nanoreservoirs of a growth factor (BMP-2). Our expected outcomes are the development of clinical applications in the field of tissue engineering and nanomedecine and particularly in bone regeneration.We propose the development of smart nanostructured active implants for regenerative medicine. Our strategycombines a synthetic biodegradable electrospun nanofibrous membrane based on PCL and a bioactive growth factor (BMP-2) entrapped into polymer nanoreservoirs built atop the nanofibers according to the layer-by-layer technology. In this study, by using primary osteoblasts, we have shown the capacity of these sophisticated implants to promote and accelerate not only in vitro bone induction; but also, in vivo, bone formation (mouse model).We have also validated our strategy, in vivo (mouse model), by using an already used in the clinic collagen membrane (animal origin) to accelerate bone regeneration. This unique strategy is used to entrap, protect and stabilize the therapeutic agent into polymer coating acting as nanoreservoirs enrobing fibers of membranes.

Page generated in 0.0767 seconds