• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micromembranes résonantes à actionnement et détection piézoélectriques intégrés pour la détection de molécules biologiques en temps réel

Ayela, Cedric 20 December 2007 (has links) (PDF)
Les avantages liés à la réduction de taille et la microfabrication, caractéristiques des microsystèmes électromécaniques (MEMS), sont favorables à l'utilisation de microstructures dans le domaine des biocapteurs. Dans ce contexte, nous avons développé des micromembranes résonantes à actionnement et détection intégrés, par l'intermédiaire d'une couche piézoélectrique (PZT), pour la transduction d'une reconnaissance biologique. Après la fabrication de matrices de micromembranes par les techniques de microfabrication, des travaux de caractérisation statique ont permis d'appréhender le comportement initial des structures et de déterminer les propriétés du matériau piézoélectrique. Ces optimisations ont ensuite servi de base pour la caractérisation dynamique des micromembranes, qui correspond à leur mode de fonctionnement en tant que capteur de masse. Ainsi, après la validation de l'actionnement intégré des structures et la détection des fréquences de résonance par les deux effets piézoélectriques, la génération optimisée de spectres a permis de développer une électronique spécifique aux structures et de les calibrer en masse pour la détermination de la sensibilité dans l'air : Sair=-15 pg/(mm².Hz). La caractérisation dynamique approfondie a permis enfin d'aborder l'utilisation des membranes en tant que biocapteur pour deux types d'application : une première orientée diagnostic par la détection spécifique en temps-réel et en milieu liquide d'anticorps alors que la seconde application concerne la combinaison des micromembranes avec des polymères à empreinte moléculaire (MIP). Cette seconde application, orientée analyse environnementale, permet de profiter des avantages liés aux MIP, tels que la stabilité et la structuration des polymères, avec ceux des micromembranes, tels que la sensibilité et le multiplexage intégré. Ces travaux correspondent à la démonstration des capacités de micromembranes résonantes pour la détection fiable, sensible, intégrée et multiplexée de biom olécules.
2

Systèmes de récupération d'énergie vibratoire large bande

Ahmed-seddik, Bouhadjar 04 October 2012 (has links) (PDF)
Dans ce travail de thèse nous nous sommes intéressés principalement à la récupération de l'énergie mécanique et plus particulièrement l'énergie vibratoire. Cette technologie repose sur l'utilisation des transducteurs résonants, ces dispositifs permettent d'amplifier l'amplitude de vibration et donc de stocker d'avantage d'énergie mécanique dans le convertisseur à la résonance. La quantité de l'énergie en sortie du convertisseur chute lorsque la fréquence de vibration n'est plus égale à la fréquence de résonance, il est donc nécessaire d'assurer un asservissement de la fréquence de résonance de la structure de récupération d'énergie vibratoire sur la fréquence de vibration, si possible sur tout le spectre fréquentiel que couvre la source de vibration. L'objectif de la thèse est de proposer des solutions, à basse consommation, permettant d'assurer un ajustement dynamique en temps réel de la fréquence de résonance en fonction de la fréquence de vibration. Les travaux de cette thèse s'articulent autour de trois solutions : 1) Ajustement de la fréquence de résonance par application d'un champ électrique dans un matériau piézoélectrique 2) Ajustement de la fréquence de résonance par adaptation de la charge électrique d'un matériau piézoélectrique 3) Amplification du mouvement vibratoire par technique de rebond Une modélisation et optimisation à la fois de la plage de fréquence de fonctionnement et de la conversion mécano-électrique ont été réalisées. Trois structures ont été développées et testées et permettent de valider chacune des trois approches. Enfin, une électronique très basse consommation a été mise au point pour asservir en temps réel la fréquence de résonance sur la fréquence de la source de vibration et optimiser le taux d'énergie électrique extraite du système (pour maintenir un facteur de qualité de la structure optimum).
3

Systèmes de récupération d'énergie vibratoire large bande / Wideband mechanical energy harvester system

Ahmed-Seddik, Bouhadjar 04 October 2012 (has links)
Dans ce travail de thèse nous nous sommes intéressés principalement à la récupération de l'énergie mécanique et plus particulièrement l'énergie vibratoire. Cette technologie repose sur l'utilisation des transducteurs résonants, ces dispositifs permettent d'amplifier l'amplitude de vibration et donc de stocker d'avantage d'énergie mécanique dans le convertisseur à la résonance. La quantité de l'énergie en sortie du convertisseur chute lorsque la fréquence de vibration n'est plus égale à la fréquence de résonance, il est donc nécessaire d'assurer un asservissement de la fréquence de résonance de la structure de récupération d'énergie vibratoire sur la fréquence de vibration, si possible sur tout le spectre fréquentiel que couvre la source de vibration. L'objectif de la thèse est de proposer des solutions, à basse consommation, permettant d'assurer un ajustement dynamique en temps réel de la fréquence de résonance en fonction de la fréquence de vibration. Les travaux de cette thèse s'articulent autour de trois solutions : 1) Ajustement de la fréquence de résonance par application d'un champ électrique dans un matériau piézoélectrique 2) Ajustement de la fréquence de résonance par adaptation de la charge électrique d'un matériau piézoélectrique 3) Amplification du mouvement vibratoire par technique de rebond Une modélisation et optimisation à la fois de la plage de fréquence de fonctionnement et de la conversion mécano-électrique ont été réalisées. Trois structures ont été développées et testées et permettent de valider chacune des trois approches. Enfin, une électronique très basse consommation a été mise au point pour asservir en temps réel la fréquence de résonance sur la fréquence de la source de vibration et optimiser le taux d'énergie électrique extraite du système (pour maintenir un facteur de qualité de la structure optimum). / The work of this thesis is focused on the mechanical energy harvesting. This technology is generally based on the use of resonant transducers. Such systems work efficiently when their resonant frequency is equal to the vibration one. Otherwise, the output power from the harvester drops dramatically. Hence, it's necessary to ensure a continuous control of the resonant frequency of the harvester in order to avoid a possible shift between the resonant frequency and the vibration one, and doing this over the frequency spectrum covered by the vibration source. The main goal of this thesis is to develop new efficient solutions able to control in real time and tune the resonant frequency, these solutions should be low power consumption. During this thesis, three solutions have been developed: 1) adjustement of the resonant frequency by applying an electric field on the piezoelectric material; 2) adjustement of the resonant by adapting the electrical load; 3) the amplification of the structure relative displacement using a rebound technique. Modelling and optimization of both the frequency adjustment techniques and the mechanical-to-electrical conversion were performed. Three structures have been developed, tested and used to validate the three approaches. Finally, a very low power consumption electronic has been developed for a real time control of the resonant frequency, by regarding the vibration frequency, and also to optimize the extracted electrical energy from the harvester by maintaining an optimum quality factor.
4

Couplage multiphysique à l’aide d’électret application à la récupération d’énergie / Multiphysics coupling with electret application to the Harvesting energy

Belhora, Fouad 07 December 2013 (has links)
Les matériaux actifs, tels que les matériaux piézoélectriques et électrostrictifs, sont couramment utilisés dans la conception de dispositifs exploitant leurs propriétés respectives. La propriété principale de ces matériaux réside dans le fort couplage entre les comportements électrique et mécanique (piézoélectricité). Dans la majorité des cas, ces matériaux sont utilisés séparément. L’utilisation combinée de ces matériaux permet la réalisation de dispositifs innovants basés sur l’effet électrostrictifs: l’apparition d’une polarisation électrique induite par une contrainte mécanique et réciproquement l’apparition d’une déformation mécanique sous l’action d’un champ électrique. Les applications « support » concernent les capteurs et les actionneurs. L’étude de ce couplage passe par la caractérisation de ces matériaux, puis par la mise en place de modèles décrivant finement leurs comportements et enfin par le développement d’outils pour la conception. L’objectif de la thèse est de remplacer le matériau céramique, rigide et à faible déformation, par un film polymère nanocomposite électroactifs, présentant des grandes déformations et forces d'actionnement sous champ électrique modéré grâce à l'incorporation dans la matrice polymère de micro et nano-objets (charge) conducteurs ou semi-conducteurs. De plus, pour des applications plus spécifiques de la récupération d’énergie, la charge du film polymère par des micro et nano-objets conducteurs sera également étudiée. Idéalement, il serait très intéressant de réaliser un matériau multifonctionnel, sensible à la fois à une stimulation mécanique (propriétés de détection et/ou de récupération d’énergie par couplage électromécanique). / In the last decades, direct energy conversion devices for medium and low grades waste heat have received significant attention due to the necessity to develop more energy efficient engineering systems. A great deal of research has in recent years been carried out on harvesting energy using piezoelectric, electrostatic, electromagnetic , and thermoelectric ,transduction, with the aim of harvesting enough energy to enable data transmission. For this purpose, piezoelectric elements have been extensively used in the past; however they present high rigidity and limited mechanical strain abilities as well as delicate manufacturing process for complex shapes, making them unsuitable in many applications. Thus, recent trends in both industrial and research fields have focused on electrostrictive polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, flexibility, and processability. Hence, electrostrictive polymer films are much more suitable for energy harvesting devices requiring high flexibilities, such as systems in smart textiles and mobile or autonomous devices. Electrostrictive polymers can also be obtained in many different shapes and over large surfaces. . In the last years, electrostrictive polymers have been investigated as electroactive materials for energy harvesting. However for scavenging energy a static field is necessary, since this material is isotope, there is no permanent polarization compare to piezoelectric material. A solution for avoid this problem; concern the hybridization of electrostrictive polymer with electret. Finally, the implementation of electrostrictive materials is much simpler for small-scale systems (MEMS). Hence, several studies have analyzed the energy conversion performance of electrostrictive polymers, both in terms of actuation and energy harvesting.
5

Nouvelles structures à polymères électroactifs / New electroactive polymers structures

Cornogolub, Alexandru 08 April 2016 (has links)
Ces travaux de thèse se veulent exploratoires et visent à proposer d’une part une nouvelle approche hybride piézoélectrique-polymère pour le développement de récupérateur d’énergie et d’autre part à développer des méthodes d’actionnement destinée au contrôle de forme structurelle. L’utilisation de polymères diélectriques dans les dispositifs de récupération d’énergie permet de concilier une densité énergétique élevée avec une faible rigidité et une simplicité de mise en œuvre. L’approche hybride proposée dans le cadre de ces travaux permet de s’affranchir de la source de polarisation externe en la substituant par un dispositif piézoélectrique apte à générer, sous l’action d’une contrainte mécanique, le champ électrique nécessaire au fonctionnement du dispositif. L’optimisation du transfert d’énergie entre deux systèmes supposé quelconque a d’abord été généralisée. Les travaux ont ensuite été orientés vers l’investigation de la faisabilité de l’approche hybride piezo-polymère. Les performances des dispositifs hybrides ont été évaluées expérimentalement et comparées à celles obtenues avec des récupérateurs piézoélectriques simples et avec des récupérateurs polymères à polarisation externe. Il est montré que l’utilisation d’un dispositif hybride permet de concilier les qualités des deux approches simples, à savoir la faculté d’initier le processus de conversion d’énergie grâce au champ électrique généré par l’élément piézoélectrique et d’exploiter la haute densité d’énergie des polymères. La deuxième partie de ces travaux porte sur l’utilisation de matériaux électroactifs comme dispositifs d’actionnement destinés au contrôle de forme de structures minces. L’application finale visée ici est le développement de matériau de type peau active. Différents types de polymères ont d’abord été testés et leur performances ont été comparées avec des modèles théoriques spécifiquement développés. Des structures originales ont été proposées pour solutionner certains problèmes liés à l’actionnement par polymères diélectriques. Des prototypes simples ont permis de valider le principe du contrôle de forme des structures à l’aide de polymères diélectriques. / Dielectric polymers have seen their importance grow in the field of electroactive materials because of their undeniable advantages, particularly for potential applications such as energy harvesting, actuation or sensors. The work done in this thesis is exploratory and aims primarily to provide on one hand a new piezoelectric-polymer hybrid approach for the development of energy harvesting systems and secondly to develop operating methods shape control of structures using electroactive polymers. The use of dielectric polymers in energy harvesting devices reconciles a high energy density with low rigidity and simplicity of integration. The main problem which is characteristic of such devices is that they necessarily require the use of an external bias high voltage supply (> 1kV) to achieve significant energy densities. The hybrid approach proposed in the context of this work eliminates this source of external energy by using a piezoelectric device capable of generating, under the action of a mechanical stress, the electric field required to operate the device. The problem of optimization of energy transfer between any two systems was also studied. The work was then directed towards the investigation of the feasibility of the piezo-polymer hybrid approach. Various configurations have been proposed and evaluated in order to deduce their optimal parameters. The performance of hybrid devices was experimentally evaluated and compared with that obtained with simple piezoelectric or electrostatic (using polymers) systems. The second part of this work focuses on the use of electroactive materials as actuators for shape control of thin structures. The final application aimed here is the development of an active skin type material allowing reconfiguration of orbiting satellite antennas. Different types of polymers were first tested and their performance has been compared with the theoretical models developed specifically in this context. Original structures have been proposed to solve some problems related to the actuation using dielectric polymers. Simple prototypes have validated the principle of the structural shape control. If their use brings undeniable advantages over conventional operating techniques, the fact remains that certain specific characteristics of electroactive polymers limit their performance. For example, the square law characteristic of the electroactive polymer control requires the use of particular geometries in order to obtain a symmetrical two-way displacement. This fact complicates the control of such actuators but allows in the end to add new features. Thus the use of a sectored network of polymer actuator is required to obtain a symmetrical movement on a single type of structure blocked blocked-beam, but allows to consider different deformation profiles. Other similar problems have been addressed using different original structures.
6

Distributed, broadband vibration control devices using nonlinear approaches / Systèmes de contrôle de vibrations distribué large bande utilisant des approches non-linéaires

Bao, Bin 23 September 2016 (has links)
L’amélioration du confort des usagers ainsi que l’augmentation du niveau de sécurité des structures requièrent le développement de techniques permettant de limiter efficacement les vibrations. Dans cette optique, les travaux exposés ici proposent le développement et l’analyse de méthodes de contrôle vibratoire pour des structures de faibles dimensions et utilisant peu d’énergie. Afin de satisfaire à ces deux critères, il est ici proposé d’utiliser des éléments piézoélectriques électriquement interfacés de manière non-linéaire et périodiquement distribués sur la structure-cible à contrôler. Ainsi, l’approche proposée permet de bénéficier à la fois des avantages des techniques de contrôle non-linéaires appliquées aux matériaux intelligents de type piézoélectrique, offrant des performances remarquables tout en étant peu consommatrices d’énergie, avec ceux des structures périodiques exhibant des bandes fréquentielles interdites présentant de fortes atténuations de la propagation d’onde. Plus particulièrement, ce mémoire s’intéresse à différentes architectures d’interconnexion des interfaces électriques non-linéaires permettant un bon compromis entre la bande fréquentielle contrôlée et les performances en termes d’atténuation des vibrations. Ainsi, trois architectures principales sont proposées, allant de structures totalement périodiques, tant au niveau mécanique qu’électrique (interconnexions), à des structures présentant un certain degré d’apériodicité sur le plan électrique (entrelacement), impactant ainsi la propagation de l’onde acoustique en élargissant la bande de contrôle, pour enfin proposer une architecture hybride entre interconnexion et entrelacement conduisant à des systèmes large bande performants. / For ameliorating vibration reduction systems in engineering applications, miscellaneous vibration control methods, including vibration damping systems, have been developed in recent years. As one of intelligent vibration damping systems, nonlinear electronic damping system using smart materials (e.g., piezoelectric materials), is more likely to achieve multimodal vibration control. With the development of meta-structures (a structure based upon metamaterial concepts), electronic vibration damping shunts, such as linear resonant damping or negative capacitance shunts, have been introduced and integrated abundantly in the electromechanical meta-structure design for wave attenuation and vibration reduction control. Herein, semi-passive Synchronized Switch Damping on the Inductor (SSDI) technique (which belongs to nonlinear electronic damping techniques), is combined with smart meta-structure (also called smart periodic structure) concept for broadband wave attenuation and vibration reduction control, especially for low frequency applications. More precisely, smart periodic structure with nonlinear SSDI electrical networks is investigated from the following four aspects, including three new techniques for limiting vibrations: First, in order to dispose of a tool allowing the evaluation of the proposed approaches, previous finite element (FE) modeling methods for piezoelectric beam structures are summarized and a new voltage-based FE modeling method, based on Timoshenko beam theory, is proposed for investigating smart beam structure with complex interconnected electrical networks; then, the first developed technique lies in smart periodic structure with nonlinear SSDI interconnected electrical networks, which involves wave propagation interaction between continuous mechanical and continuous nonlinear electrical media; the second proposed topology lies in smart periodic structures with nonlinear SSDI interleaved / Tri-interleaved electrical networks involving wave propagation interaction between the continuous mechanical medium and the discrete nonlinear electrical medium. Due to unique electrical interleaved configuration and nonlinear SSDI electrical features, electrical irregularities are induced and simultaneously mechanical irregularities are also generated within an investigated periodic cell; the last architecture consists in smart periodic structures with SSDI multilevel interleaved-interconnected electrical networks, involving wave propagation interaction between the continuous mechanical medium and the multilevel continuous nonlinear electrical medium. Compared with the SSDI interconnected case, more resonant-type band gaps in the primitive pass bands of purely mechanical periodic structures can be induced, and the number of such band-gaps are closely related to the interconnection / interleaved level. Finally, the main works and perspectives of the thesis are summarized in the last chapter.

Page generated in 0.0789 seconds