• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy

Patsora, Iryna, Tatarchuk, Dmytro, Heuer, Henning, Hillmann, Susanne 28 March 2017 (has links)
Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC) spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.
12

Nástroj pro modelování a simulaci technologických procesů / Tool for Modelling and Simulation of Technologic Processes

Skydánek, Libor January 2009 (has links)
This thesis focuses on the problem of technological process modelling and simulation. It is based on the realistic requirements of the Faculty of Mechanical Engineering, where they lacked an extensible and open simulation tool with the ability to model biomass processing. In this work we explain the main concepts in the field of (physical) chemistry, the systematic approach to process modelling and simulation and we discuss various problems of simulation methods. We also describe the differences between simulation and design specifications and give reasons for choosing the sequential modular approach. An important part of the work is aimed at the design of the simulation tool's architecture, where the main emphasis is laid on the extensibility of future application. The tool has been implemented and it is now sucessfully being used at the Faculty of Mechanical Engineering.
13

Mit Prozesssimulation und Strukturmechanik zu mehr Nachhaltigkeit

Paul, Steffen 24 May 2023 (has links)
simulationsunterstützte Weiterentwicklung eines Produktes mit dem Ziel der Material- sowie Energieeinsparung während des Herstellungsprozesses; konstruktive und simulative Optimierung des Kunststoff-Spritzgieß-Bauteils (Gewichtsreduktion, Einsparung von Zykluszeit) bei gleichzeitigem Erhalt der Funktion und mechanischen Eigenschaften; durch gekoppelte Simulation des Herstellungsprozesses und der Strukturmechanik konnten Herstellungskosten, Materialkosten sowie der Energieaufwand im Herstellungsprozess deutlich reduziert werden. / Simulation-supported further development of a product with the aim of saving material and energy during the manufacturing process; constructive and simulative optimisation of the plastic injection moulding component (weight reduction, saving of cycle time) while at the same time maintaining the function and mechanical properties; through coupled simulation of the manufacturing process and the structural mechanics, manufacturing costs, material costs and the energy input in the manufacturing process could be significantly reduced.

Page generated in 0.416 seconds