Spelling suggestions: "subject:"datenmaterial characterization"" "subject:"ateljématerial characterization""
51 |
Drop Test Simulation Of A Munition With Foams And Parametric Study On Foam Geometry And MaterialGerceker, Bora 01 September 2012 (has links) (PDF)
Unintentional drop of munitions could be encountered during the storage, transportation, and loading processes. In such an impact, malfunctioning of crucial components of munitions is the worst scenario that may be encountered and level of loads should not reach to critical levels. From two possible methods, experimental one is not frequently applied owing to high cost of money and time. On the contrary, particularly in last couple of years, interest is shifted to numerical simulations such as finite element method.
In this thesis, foam materials will be investigated as energy absorbers to reduce the effect of loads during the impact. However, modeling the behavior of foam materials by FE codes is a challenging task. In other words, more than a few material parameters which are not commonly specified in literature are sufficient to represent the behavior of foams in an appropriate way. For this reason, material characteristics of the selected two foam materials, expanded polypropylene and
v
polyethylene, have been obtained in this study. Characterization of EPP and PE is followed by the selection of the appropriate material models in LS-DYNA which is a nonlinear explicit finite element code.
Drop tests of munitions on which initially specified foam materials are integrated were done to identify the load levels. Validation of drop tests which are explained in detail in this thesis has been accomplished by LS-DYNA. Final section of the thesis is related to optimization of the foam geometry which will provide reducing load levels to allowable limits. After optimization studies, three alternative geometries which succeed in to reduce loads to allowable load levels were reached. Finally, one of three alternatives is selected considering cost and manufacturing difficulties.
|
52 |
On-chip dielectric cohesive fracture characterization and mitigation investigation through off-chip carbon nanotube interconnectsGinga, Nicholas J. 27 August 2014 (has links)
The cohesive fracture of thin films is a concern for the reliability of many devices in microelectronics, MEMS, photovoltaics, and other applications. In microelectronic packaging the cohesive fracture toughness has become a concern with new low-k dielectric materials currently being used. To obtain the low-k values needed to meet electrical performance goals, the mechanical strength of the material has decreased. This has resulted in cohesive cracks occurring in the Back End of Line (BEoL) dielectric layers of the microelectronic packages. These cracks lead to electronic failures and occur after thermal loading (due to CTE mismatch of materials) and mechanical loading. To prevent these cohesive cracks, it is necessary to measure the cohesive fracture resistance of these thin films to implement during the design and analysis process. Many of the current tests to measure the cohesive fracture resistance of thin films are based on methods developed for larger scale specimens. These methods can be difficult to apply to thin films due to their size and require mechanical fixturing, physical contact near the crack tip, and complicated stress fields. Therefore, a fixtureless cohesive fracture resistance measurement technique has been developed that utilizes photolithography fabrication processes. This technique uses a superlayer thin film with a high intrinsic stress deposited on top of the desired test material to drive cohesive fracture through the thickness of test material. In addition to developing a technique to measure the fracture resistance of dielectric thin films, the use of carbon nanotube (CNT) forests as off-chip interconnects is investigated as a potential method to mitigate the fracture of these materials. The compressive and tensile modulus of CNT forests is characterized, and it is seen that the modulus is several orders of magnitude less than that of a single straight CNT. The low-modulus CNT forest will help mechanically decouple the chip from the board and reduce stress occurring in the dielectric layers as compared to the current technology of solder ball interconnects and therefore improve reliability. The mechanical performance of these CNT interconnects is investigated by creating a finite-element model of a flip chip electronic package utilizing CNT interconnects and comparing the chip stresses to a traditional solder ball interconnect scenario. Additionally, flip chips are fabricated with CNT forest interconnects, assembled to an FR4 substrate, and subjected to accelerated thermomechanical testing to experimentally investigate their performance.
|
53 |
The Effects of Fiber Orientation State of Extrusion Deposition Additive Manufactured Fiber-Filled Thermoplastic PolymersPasita Pibulchinda (9012281) 25 June 2020 (has links)
<p>Extrusion
Deposition Additive Manufacturing (EDAM) is a process in which fiber-filled
thermoplastic polymers are mixed and melted in an extruder and deposited onto a
build plate in a layer-by-layer basis. Anisotropy caused by flow-induced
orientation of discontinuous fibers along with the non-isothermal cooling
process gives rise to internal stresses in printed parts which results in part
deformation. The deformation and residual stresses can be abated by modifying
the fiber orientation in the extrudate to best suit the print geometry. To that
end, the focus of this research is on understanding the effect of fiber
orientation state and fiber properties on effective properties of the printed
bead and the final deformation of a part. The properties of three different
orientation tensors of glass fiber-filled polyamide and carbon fiber-filled
polyamide were experimentally and virtually characterized via micromechanics. A
thermo-mechanical simulation framework developed in ABAQUS© was used to
understand the effects of the varying fiber orientation tensor and fiber
properties on the final deformation of printed parts. In particular, a
medium-size geometry that is prone to high deformation was simulated and
compared among the three orientation tensors and two material systems. This
serves to be a good preliminary study to understand microscopic properties induced
deformations in EDAM.</p>
|
54 |
Laser-induced breakdown spectroscopy applications for metal-labeled biomolecule detection in paper assaysCarmen Gondhalekar (9029573) 29 June 2020 (has links)
This doctoral thesis investigates the application of laser-induced breakdown spectroscopy (LIBS) for detection of labeled biomolecules on nitrocellulose paper. Nitrocellulose paper is a material often used for assays involving the concentration and labeling of a target analyte, followed by label detection. Among paper-based diagnostics are lateral-flow immuno-assays (LFIAs). Research efforts have made LFIAs into accessible, portable,and low-cost tools for detecting targets such as allergens, toxins,and microbes in food and water.Gold (Au) nanoparticles are standard biomolecular labels among LFIAs, typically detected via colorimetric means.Other labels, such as quantum dots, are also often metallic, and research is ongoing to expand the number of portable instrumentations applied to their detection. A wide diversity of lanthanide-complexed polymers (LCPs) are used as immunoassay labels but have been inapt for portable paper-based assays owing to lab-bound detection instrumentation, until now. LIBS is a multi-element characterization technique which has recently developed from a bench-top to a portable/hand-held analytical tool. This is among the first studies to show that LCPs can be considered as options for biomolecule labels in paper-based assays using bench-based and hand-held LIBS as label detection modalities.<div>Chapter one reviews the importance of rapid, multiplexed detection of chemical and biological contaminants, the application of current biosensors, and the role of LIBS as an emerging biosensor. Paper-based bioassays were identified as a promising approach for contaminant detection whose capabilities could be enhanced by LIBS. The next chapter dives into LIBS system designs to address which LIBS parameters were appropriate for label detection on paper assay material. A balance of LIBS parameters was found to be important for successful analyte detection. Chaptert hree optimizes a LIBS design for sensitive detection of 17 metals and establishes limit of detection values for 7 metals. Optimal detection parameters depended on the metal being detected and were applied to the objective of the final chapter: LIBS detection of labeled antigen immobilized on a paper-based assay. Both antibody and bacteria detection assays were successfully performed and analyzed using bench top and portable LIBS,suggesting an exciting future for the use of LIBS as a biosensor.The prospect of using LIBS for multiplexed, rapid and sensitive detection of biomolecules in assays is explored, laying grounds for future work in the ever-relevant field of biological and chemical hazard detection.<br></div>
|
55 |
Investigation of processing parameters for laser powder bed fusion additive manufacturing of bismuth tellurideRickert, Kelly Michelle 02 June 2022 (has links)
No description available.
|
56 |
Hochfrequent beanspruchte Polymerstrukturen für den Einsatz als endodontische InstrumenteKucher, Michael 20 March 2023 (has links)
In der Zahnmedizin werden endodontische Instrumente aus metallischen und polymeren Werkstoffen zur Desinfektion infizierter Wurzelkanalsysteme eingesetzt. Durch den Einsatz von Polymeren ergeben sich aufgrund ihrer günstigen Werkstoffeigenschaften die Vorzüge einer minimal invasiven Arbeitsweise und einer geringeren Bruchgefahr. Demgegenüber besitzen die eingesetzten metallischen Instrumente durch hochfrequente Oszillationen eine verbesserte Reinigungswirkung. Zur Auslegung optimierter polymerbasierter Instrumente, die zuverlässig reinigen, wird daher eine simulationsbasierte Entwicklungsmethode erarbeitet. Ausgangspunkt hierfür ist die ingenieurwissenschaftliche Analyse der methodischen und experimentellen Grundlagen des Gesamtsystems. Die Beschreibung des instationären Schwingungsverhaltens der Instrumente erfolgt durch dynamische Finite-Elemente-Analysen unter Verwendung eines viskoelastischen Materialmodells. Das dazu erforderliche Materialverhalten des ausgewählten Polymers Polyetheretherketon wird mithilfe eines neu entwickelten Prüfaufbaus charakterisiert. Das erarbeitete Simulationsmodell ermöglicht erstmalig eine Analyse des kontaktmechanischen Verhaltens polymerer Miniaturstrukturen unter hochfrequenter Schwingungsanregung. Im Ergebnis steht mit diesem Modell eine realitätsnahe Beschreibung des Schwingungsverhaltens und der auftretenden Beanspruchungen zur Verfügung. Die gewonnenen Erkenntnisse leisten einen wesentlichen Beitrag zur gezielten, werkstoffgerechten und schwingungsoptimierten Auslegung von zukünftigen zahnmedizinischen Instrumenten zur Wurzelkanalreinigung.:1 Einleitung
1.1 Literaturübersicht
1.2 Problemstellung und Zielsetzung
2 Thermoplastische Polymere für die Anwendung in endodontischen Instrumenten
2.1 Mechanische und technische Anforderungen
2.1.1 Bestimmung einer repräsentativen Wurzelkanalgeometrie
2.1.2 Schwingungstechnik und Aufbau von Reinigungsansätzen
2.1.3 Werkstoffauswahl für Reinigungsansätze
2.1.4 Fertigungstechnologien für Miniaturstrukturen aus PEEK
2.2 Biologische und mechanische Wechselwirkungen
2.2.1 Verhalten gegenüber desinfizierenden Spüllösungen
2.2.2 Tribologie der Wurzelkanalreinigung
3 Analyse des zyklischen Verformungsverhaltens von PEEK
3.1 Phänomenologische Beschreibung des Verformungsverhaltens
3.1.1 Klassifizierung des Materialverhaltens
3.1.2 Elastische Verformung thermoplastischer Polymere
3.1.3 Mechanische Dämpfung
3.2 Experimentelle Untersuchungen
3.2.1 Probekörper
3.2.2 Versuchsaufbau und Durchführung
3.2.3 Voruntersuchungen
3.2.4 Ergebnisse der experimentellen Untersuchungen
4 Modellierung des zyklischen Deformationsverhaltens von PEEK
4.1 Einachsige rheologische viskoelastische Materialmodelle
4.1.1 Allgemeine konstitutive Gleichungen
4.1.2 Einachsige rheologische Grundelemente
4.1.3 Einachsige rheologische Modelle
4.1.4 Vergleich der einachsigen rheologischen Modelle
4.2 Charakterisierung des viskoelastischen Materialverhaltens
4.2.1 Analytische Beschreibung der Balkenschwingung
4.2.2 Resonanzkurvenverfahren
4.2.3 Bestimmung der Materialparameter von PEEK
4.3 Numerische Implementierung eines mehrachsigen Materialmodells
4.3.1 Mehrachsiges Materialmodell
4.3.2 Validierung des implementierten Materialmodells
5 Simulation des Schwingungsverhaltens und experimentelle Verifikation
5.1 Numerische Simulationsmodelle
5.1.1 Geometrische Modelle
5.1.2 Rand- und Anfangsbedingungen
5.1.3 Kontaktmodellierung
5.2 Simulationsergebnisse
5.2.1 Schwingungsverhalten ohne Oberflächenkontakt
5.2.2 Schwingungsverhalten mit Oberflächenkontakt
6 Zusammenfassung
Literaturverzeichnis
A Experimentelle Voruntersuchungen
B Klassische Balkentheorie / In dentistry, endodontic instruments made of metallic and polymer materials are used for the disinfection of infected root canal systems. Due to their beneficial material properties, the use of polymers offers the advantages of a minimally invasive operation and a lower risk of breakage. In contrast, the metallic instruments used have an improved cleaning efficiency due to high-frequency oscillations. A simulation-based development method for the design of optimized polymer-based instruments that clean effectively is therefore being worked out. As starting point, an engineering analysis of the methodological and experimental fundamentals of the overall system has been carried out. The description of the instrument’s transient vibration behavior is performed by dynamic finite element analyses using a viscoelastic material model. The required material behavior of the selected polymer polyetheretherketone is characterized with the aid of a newly developed test setup. The resulting simulation model allows for the first time an analysis of the contact mechanical behavior of polymeric miniaturized structures under high-frequency vibration excitation. As a result, this model provides a realistic description of the vibration behavior and the stresses that occur. The knowledge gained will make a significant contribution to the targeted, material-specific and vibration-optimized design of future dental instruments for root canal irrigation.:1 Einleitung
1.1 Literaturübersicht
1.2 Problemstellung und Zielsetzung
2 Thermoplastische Polymere für die Anwendung in endodontischen Instrumenten
2.1 Mechanische und technische Anforderungen
2.1.1 Bestimmung einer repräsentativen Wurzelkanalgeometrie
2.1.2 Schwingungstechnik und Aufbau von Reinigungsansätzen
2.1.3 Werkstoffauswahl für Reinigungsansätze
2.1.4 Fertigungstechnologien für Miniaturstrukturen aus PEEK
2.2 Biologische und mechanische Wechselwirkungen
2.2.1 Verhalten gegenüber desinfizierenden Spüllösungen
2.2.2 Tribologie der Wurzelkanalreinigung
3 Analyse des zyklischen Verformungsverhaltens von PEEK
3.1 Phänomenologische Beschreibung des Verformungsverhaltens
3.1.1 Klassifizierung des Materialverhaltens
3.1.2 Elastische Verformung thermoplastischer Polymere
3.1.3 Mechanische Dämpfung
3.2 Experimentelle Untersuchungen
3.2.1 Probekörper
3.2.2 Versuchsaufbau und Durchführung
3.2.3 Voruntersuchungen
3.2.4 Ergebnisse der experimentellen Untersuchungen
4 Modellierung des zyklischen Deformationsverhaltens von PEEK
4.1 Einachsige rheologische viskoelastische Materialmodelle
4.1.1 Allgemeine konstitutive Gleichungen
4.1.2 Einachsige rheologische Grundelemente
4.1.3 Einachsige rheologische Modelle
4.1.4 Vergleich der einachsigen rheologischen Modelle
4.2 Charakterisierung des viskoelastischen Materialverhaltens
4.2.1 Analytische Beschreibung der Balkenschwingung
4.2.2 Resonanzkurvenverfahren
4.2.3 Bestimmung der Materialparameter von PEEK
4.3 Numerische Implementierung eines mehrachsigen Materialmodells
4.3.1 Mehrachsiges Materialmodell
4.3.2 Validierung des implementierten Materialmodells
5 Simulation des Schwingungsverhaltens und experimentelle Verifikation
5.1 Numerische Simulationsmodelle
5.1.1 Geometrische Modelle
5.1.2 Rand- und Anfangsbedingungen
5.1.3 Kontaktmodellierung
5.2 Simulationsergebnisse
5.2.1 Schwingungsverhalten ohne Oberflächenkontakt
5.2.2 Schwingungsverhalten mit Oberflächenkontakt
6 Zusammenfassung
Literaturverzeichnis
A Experimentelle Voruntersuchungen
B Klassische Balkentheorie
|
57 |
Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy-Nitride Films for Electronic and Photovoltaic ApplicationsJiang, Nanke 11 July 2013 (has links)
No description available.
|
58 |
Mesostructural Characterization and Probabilistic Modeling of the Design Limit States of Parallel Strand LumberAmini, Alireza 01 February 2013 (has links)
Over recent decades, the public tendency toward using the structural composite lumber (SCL), a common composite of wood made of wood strands or veneers glued and compressed together, as structural members (especially the main load bearing members such as beams and columns) has risen considerably. In contrast to the fast-paced market growth of these products, development is slow. The experimental development is gradual and time-consuming and the computational development is even slower. The objective of this project is to introduce appropriate numerical models for limit state analysis of a certain type of SCL material called PSL.
Parallel strand lumber (PSL), has mesostructures characterized by the presence of voids that renders the mesostructure highly heterogeneous. In addition to material phase aberrations such as grain angle variations and defects, void heterogeneities play an important role in determining the failure modes and strength of PSL. In this study, virtual void structures were defined to form part of the input to finite element analysis of PSL for the purpose of investigating the sensitivity of strength to the void structure. Assuming the wood phase to be homogeneous and orthotropic, the following 2D and 3D characteristics of voids were investigated: volume fraction, volume, alignment and moments of inertia of voids, as well as second moment properties, lineal path function and chord length functions of the two phase mesostructure. In addition, a method was developed to generate virtual voids in order to simulate PSL and investigate the possible effects of the void distribution on material strength.
An experimental program along with a statistical survey was conducted to quantify the mentioned characteristics of the voids in two 133 mm * 133 mm * 610 mm 2.0 E Eastern Species PSL billets. As expected, most of the voids lie on the longitudinal direction of the specimen and have approximately an ellipsoidal shape. Based on this shape data, the characteristics of the ellipsoids which best t the voids were calculated. Using the statistical data of the fitted ellipsoids, a random field of virtual ellipsoid shaped voids to simulate the mesostructure of PSL was generated.
In this study, the simulation of PSL material is based on two simplifying assumptions: 1) The wood phase is continuum, homogeneous and orthotropic. While in reality, the wood phase consists of glued wood strands that are heterogeneous due to their mechanical variability and only roughly orthotropic on a macro scale as a result of the varying fiber angle; 2) Voids are the mere source of uncertainty. The linear elastic analysis of carefully defined (in mesostructural aspect) PSL models can be the first step of mechanical study of the material. The effective modulus of elasticity of material in presence of voids and the distribution of conventional, principal and effective stresses considering the effect of volume fraction and shape of the voids are the target of this preliminary study. Linear elastic uniaxial analyses showed good mechanical consistency between the models including actual void shapes and the models including ellipsoidal void representations. Also, they showed that the stress mutliaxiality at the tip of the voids is negligible.
The study of mechanics of PSL is incomplete unless the question of material anisotropy is taken into consideration. PSL is brittle in tension and ductile in compression. The material heterogeneity increases the complexity of the problem by affecting the stress distribution in the member. A detailed nonlinear approach has been proposed in order to investigate the mechanical behavior of PSL structural members under different uniaxial loading scenarios. This approach introduces proper constitutive models for the wood phase along with good void generation techniques. In other words, this approach suggests what models should be used for the continuum-assumed wood phase to simulate its brittle behavior in tension and ductile behavior in compression; and moreover, tests the applicability and accuracy of ellipsoidal void representation. The models are calibrated using the results of experiments on PSL material.
Because of the brittle behavior, all wood products show significant mechanical dependency to the member's size under tensile loading. Once good constitutive model and mesostructural simulation is found for tensile loading, it is easy to make and analyze PSL models with different sizes and investigate the effect of size on mechanical behavior. The simulation results have been compared to the available results of a previously done experimental study.
|
59 |
The influence of microstructure on the crack initiation and propagation in Al-Si casting alloysBogdanoff, Toni January 2021 (has links)
For reducing the CO2 footprint in many industrial fields, the goal is to produce lighter components. The aluminium-silicon (Al-Si) cast alloys are promising candidates to fulfill these goals with a high weight-to-strength ratio, good corrosion properties, excellent castability, and recyclable material. However, the variations within these components need to be understood to produce high-performance components for critical applications. The main reason for the rejection in these applications is defects and microstructural features that reduce the mechanical properties. The addition of copper (Cu) is one way of increasing the mechanical properties in Al-Si alloys and is commonly used in the automotive industry. Casting defects harm the mechanical properties, and these defects can be reduced by improving the melt quality, the correct design of the component, and the gating system. The study aims to investigate the static mechanical properties and the crack initiation and propagation under cyclic loading in an Al-7Si-Mg cast alloy with state-of-the-art experiments. The main focuses were on the effect of the HIP process and the role of Cu addition. In-situ cyclic testing using a scanning electron microscope coupled with electron back-scattered diffraction, digital image correlation, focused ion beam (FIB) slicing, and computed tomography scanning was used to evaluate the complex interaction between the crack path and the microstructural features. The amount of Cu retained in the α-Al matrix in as-cast and heat-treated conditions significantly influenced the static mechanical properties by increasing yield strength and ultimate tensile strength with a decrease in elongation. The three-nearest-neighbor distance of eutectic Si and Cu-rich particles and crack tortuosity were new tools to describe the crack propagation in the alloys, showing that a reduced distance between the Cu-rich phases is detrimental for the mechanical properties. Three dimensional tomography using a FIB revealed that the alloy with 3.2 wt.% Cu had a significantly increased quantity of cracked Si particles and intermetallic phases ahead of the crack tip than the Cu-free alloy. The effect of Cu and HIP process in this work shows the complex interaction between the microstructural features and the mechanical properties, and this needs to be considered to produce high-performance components. / Ett sätt att nå målen med minskade koldioxidutsläpp inom industrin är att producera lättare komponenter. Aluminium-kisel (Al-Si) gjutna legeringar är därför ett bra alternativ då dessa legeringar har ett bra förhållande mellan hållfasthet och vikt, goda korrosionsegenskaper, utmärkt gjutbarhet och är ett återvinningsbart material. En av de största utmaningarna för att producera högpresterande komponenter för kritiska applikationer är variationerna i egenskaper inom dessa komponenter. Orsaken till att inte gjutna Al-Si legeringar andvänds i dessa applikationer är förståelsen av defekter och mikrostruktuella faser påverkar de mekaniska egenskaperna negativt. Koppar (Cu) tillsätts i Al-Si legeringar för att öka de mekaniska egenskaperna vilket ofta nyttjas inom bilindustrin. Hot isostatic pressing (HIP) prosessen är en annan möjlighet att förbättra de mekaniska egenskaperna genom att reducera porositeter i materialet. Studien syftar till att undersöka de mekaniska egenskaperna och sprickinitiering och spricktillväxt i en gjuten legering av Al-7Si-Mg med utmattningstestning i svepelektronmikroskop (SEM) i kombination med electron backscatter diffraction, digital image correlation och focused ion beam (FIB). Mängden Cu i Al-Si legeringen påverkade de statiska mekaniska egenskaperna genom att öka sträckgränsen och brottgränsen. Tillsats av Cu upp till 1.5 vikt.% påverkar inte spricktillväxten märkbart. Däremot förändras beteendet markant vid tillsatser av Cu på mer än 3.0 vikt.% som resulterade i en markant reducering i duktilitet. I det värmebehandlade materialet påverkades de mekaniska egenskaperna av Al-matrisen och mängden intermetalliska faser. Avståndet mellan Cu faserna och Si faserna används för att beskriva spricktillväxten i Al-Si legeringarna. Detta tillsammans med tredimensionell tomografi visade att legeringen med 3.2 vikt.% Cu hade en ökad mängd sprickor i området framför den avancerande sprickan, vilket inte den Cu fria legeringen visade. Al-Si legeringen som utsattes för HIP-processen och värmebehandlingen visade att materialets mikrostruktur i gjutet tillstånd påverkade resultatet. HIP processen slöt porositerena i alla undersökta prover och förbättrade de mekaniska egenskaperna. Dessa resultat kommer kunna användas för att konstruera mer högpresterande komponenter.
|
60 |
Characterization, Modeling, and Applications of Novel Magneto-Rheological ElastomersSinko, Robert Arnold 24 April 2012 (has links)
No description available.
|
Page generated in 0.1461 seconds