• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 11
  • 9
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 78
  • 78
  • 24
  • 23
  • 20
  • 20
  • 19
  • 18
  • 16
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A nonlinear stress sensitivity study on role of Coil-thrombus complex in reduction of idealized cerebral aneurysm wall stresses

RAMACHANDRAN, RAHUL 22 April 2008 (has links)
No description available.
12

Brain Magnetic Resonance Elastography based on Rayleigh damping material model

Petrov, Andrii January 2013 (has links)
Magnetic Resonance Elastography (MRE) is an emerging medical imaging modality that allows quantification of the mechanical properties of biological tissues in vivo. MRE typically involves time-harmonic tissue excitation followed by the displacement measurements within the tissue obtained by phase-contrast Magnetic Resonance Imaging (MRI) techniques. MRE is believed to have great potential in the detection of wide variety of pathologies, diseases and cancer formations, especially tumors. This thesis concentrates on a thorough assessment and full rheological evaluation of the Rayleigh damping (RD) material model applied to MRE. The feasibility of the RD model to accurately reconstruct viscoelastic and damping properties was assessed. The goal is to obtain accurate quantitative estimates of the mechanical properties for the in vivo healthy brain via the subzone optimization based nonlinear image reconstruction algorithm. The RD model allows reconstruction of not only stiffness distribution of the tissue, but also energy attenuation mechanisms proportionally related to both elastic and inertial effects. The latter allows calculation of the concomitant damping properties of the material. The initial hypothesis behind this research is that accurate reconstruction of the Rayleigh damping parameters may bring additional diagnostic potential with regards to differentiation of various tissue types and more accurate characterisation of certain pathological diseases based on different energy absorbing mechanisms. Therefore, the RD model offers reconstruction of three additional material properties that might be of clinical diagnostic merit and can enhance characterisation of cancer tumors within the brain. A pneumatic-based actuator was specifically developed for in vivo human brain MRE experiments. Performance of the actuator was investigated and the results showed that the actuator produces average displacement in the range of 300 µmicrons and is well suited for generation of shear waves if applied to the human head. Unique features of the the actuator are patient comfort and safety, MRI compatibility, flexible design and good displacement characteristics. In this research, a 3D finite element (FE) subzone-based non-linear reconstruction algorithm using the RD material model has been applied and rigorously assessed to investigate the performance of elastographic based reconstruction to accurately recover mechanical properties and a concomitant damping behaviour of the material. A number of experiments were performed on a variety of homogenous and heterogeneous tissue-simulating damping phantoms comprising a set of materials that mimic range of mechanical properties expected in the brain. The result showed consistent effect of a poor reconstruction accuracy of the RD parameters which suggested the nonidentifiable nature of the RD model. A structural model identifiability analysis further supported the nonidentifiabilty of the RD parameters at a single frequency. Therefore, two approaches were developed to overcome the fundamental identifiability issue. The first one involved application of multiple frequencies over a broad range. The second one was based on parametrisation techniques, where one of the damping parameters was globally defined throughout the reconstruction domain allowing reconstruction of the two remaining parameters. Based on the findings of this research, multi-frequency (MF) elastography was performed on the tissue-simulating phantoms to investigate improvement of the elastographic reconstruction accuracy. Dispersion characteristics of the materials as well as RD changes across different frequencies in various materials were also studied. Simultaneous multi-frequency inversion was undertaken where two models were evaluated: a zero-order model and a power-law model. Furthermore, parametric-based RD reconstruction was carried out to evaluate enhancement of accurate identification of the reconstructed parameters. The results showed that parametric-based RD reconstruction, compared to MF-based RD results, allowed better material characterisation on the reconstructed shear modulus image. Also, significant improvement in material differentiation on the remaining damping parameter image was also observed if the fixed damping parameter was adjusted appropriately. In application to in vivo brain imaging, six repetitive MRE examinations of the in vivo healthy brain demonstrated promising ability of the RD MRE to resolve local variations in mechanical properties of different brain tissue types. Preliminary results to date show that reconstructed real shear modulus and overall damping levels correlate well with the brain anatomical features. Quantified shear stiffness estimates for white and gray matter were found to be 3 kPa and 2.1 kPa, respectively. Due to the non-identifiability of the model at a single frequency, reconstructed RD based parameters limit any physical meaning. Therefore, MF-based and parametric-based cerebral RD elastography was also performed.
13

Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

Frantziskonis, George N., Gur, Sourav January 2017 (has links)
Thermally induced phase transformation in NiTi shape memory alloys (SMA) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MD) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19 phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced martensite phase fraction (MPF) evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.
14

Vergleich von Strategien zur Simulation der Kompression in Blattebene bei der 3D Umformung von Karton

Wallmeier, Malte 25 February 2013 (has links) (PDF)
Die vorliegende Arbeit hat die Entwicklung eines Konzepts für das Materialmodell zur Simulation des Ziehprozesses mit Karton zum Ziel. Der Ziehprozess stellt bei seiner Simulation hohe Anforderungen an das verwendete Materialmodell. Mehrachsige Spannungszustände und die Einflüsse von Temperatur und Feuchtigkeit müssen berücksichtigt werden. Dazu werden Materialverhalten, Materialmodelle und ihre mathematisch-physikalischen Grundlagen, Spannungssituation und Anforderungen des Ziehprozesses an ein Materialmodell analysiert. Es wird ein Konzept dargelegt, in dem die Simulation des Ziehprozesses in drei Schritte unterteilt wird. Im ersten Teil werden Materialfeuchte und Temperatur mit einem zweidimensionalen Netzwerkmodell bestimmt. Im zweiten Schritt werden Materialparameter mit Hilfe eines dreidimensionalen Netzwerkmodells in Abhängigkeit von zuvor ermittelten Feuchte- und Temperaturwerten und mechanischer Belastung gewonnen. Diese Parameter werden im dritten Teil zur Simulation des Ziehprozesses mit einem makromechanischen Materialmodell genutzt. / A concept for the development of a paperboard material model for the simulation of deepdrawing processes is presented in this thesis. Concerning its simulation, the deep drawing process of paperboard is demanding. Complex states of tension, humidity and changes of temperature during the process have to be considered. Thus properties of paperboard, material-models, their mathematical-physical background and tensions during the deep-drawing process are analyzed. A concept for the material-model, dividing the simulation in three steps, is proposed. In the first step, temperature and humidity are determined, using a two-dimensional lattice model. During the second step material parameters, depending on the state of tension are evaluated with a three-dimensional lattice model. The third step contains the simulation of the deep-drawing process with a three-dimensional continuum model.
15

Simulation of hard projectile impact on friction stir welded plate

Wang, Wei 12 1900 (has links)
A numerical simulation is conducted using LS-DYNA to simulate hard projectile impact on a friction stir welded (FSW) plate. As the hard projectile has a wide range of velocity, mass and shape, when referring to AMC 25.963(e) of CS-25, ―Fuel Tank Access Cover‖, the hard projectile can be defined as 9.5 mm cubic-shaped steel engine debris with an initial impact velocity of 213.4 m/s (700 ft/s). This preliminary study was to evaluate whether the fuel tank adjacent skin panel joined by FSW would pass the regulation. First, the geometry and Johnson-Cook material model of the FSW joint were developed based on previous experimental research and validated by comparison with the tensile test on the FSW specimen. Then the impact on an Aluminium Alloy 2024 (AA 2024) plate without FSW was modelled. The minimum thickness of a homogeneous AA 2024 plate which could withstand the impact from engine debris is 3 mm. Finally the impact on 3 mm thick AA 2024 FSW plate was simulated. The welding induced residual stress was implemented in the plate model. The impact centre was changed from the nugget zone to the thermo-mechanically affected zone, heat-affected zone and base material zone of the FSW joint. Penetration only occurred in the model with impact centre on the nugget zone. Additional simulation indicated that increasing the thickness of the FSW plate to 3.6 mm could prevent the penetration.
16

Finite Element Modelling Of Anular Lesions in the Lumbar Intervertebral Disc

Little, Judith Paige January 2004 (has links)
Low back pain is an ailment that affects a significant portion of the community. However, due to the complexity of the spine, which is a series of interconnected joints, and the loading conditions applied to these joints the causes for back pain are not well understood. Investigations of damage or failure of the spinal structures from a mechanical viewpoint may be viewed as a way of providing valuable information for the causes of back pain. Low back pain is commonly associated with injury to, or degeneration of, the intervertebral discs and involves the presence of tears or lesions in the anular disc material. The aim of the study presented in this thesis was to investigate the biomechanical effect of anular lesions on disc function using a finite element model of the L4/5 lumbar intervertebral disc. The intervertebral disc consists of three main components - the anulus fibrosus, the nucleus pulposus and the cartilaginous endplates. The anulus fibrosus is comprised of collagen fibres embedded in a ground substance while the nucleus is a gelatinous material. The components of the intervertebral disc were represented in the model together with the longitudinal ligaments that are attached to the anterior and posterior surface of the disc. All other bony and ligamentous structures were simulated through the loading and boundary conditions. A high level of both geometric and material accuracy was required to produce a physically realistic finite element model. The geometry of the model was derived from images of cadaveric human discs and published data on the in vivo configuration of the L4/5 disc. Material properties for the components were extracted from the existing literature. The anulus ground substance was represented as a Mooney-Rivlin hyperelastic material, the nucleus pulposus was modelled as a hydrostatic fluid in the healthy disc models and the cartilaginous endplates, collagen fibres and longitudinal ligaments were represented as linear elastic materials. A preliminary model was developed to assess the accuracy of the geometry and material properties of the disc components. It was found that the material parameters defined for the anulus ground substance did not accurately describe the nonlinear shear behaviour of the tissue. Accurate representation this nonlinear behaviour was thought to be important in ensuring the deformations observed in the anulus fibrosus of the finite element model were correct. There was no information found in the literature on the mechanical properties of the anulus ground substance. Experimentation was, therefore, carried out on specimens of sheep anulus fibrosus in order to quantify the mechanical response of the ground substance. Two testing protocols were employed. The first series of tests were undertaken to provide information on the strain required to initiate permanent damage in the ground substance. The second series of tests resulted in the acquisition of data on the mechanical response of the tissue to repeated loading. The results of the experimentation carried out to determine the strain necessary to initiate permanent damage suggested that during daily loading some derangement might be caused in the anulus ground substance. The results for the mechanical response of the tissue were used to determine hyperelastic constants which were incorporated in the finite element model. A second order Polynomial and a third order Ogden strain energy equation were used to define the anulus ground substance. Both these strain energy equations incorporated the nonlinear mechanical response of the tissue during shear loading conditions. Using these geometric data and material properties a finite element model of a representative L4/5 intervertebral disc was developed. When the measured material parameters for the anulus ground substance were implemented in the finite element model, large deformations were observed in the anulus fibrosus and excessive nucleus pressures were found. This suggested that the material parameters defining the anulus ground substance were overly compliant and in turn, implied the possibility that the stiffness of the sheep anulus ground substance was lower than the stiffness of the human tissue. Even so, the mechanical properties of the sheep joints had been shown to be similar to those of the human joint and it was concluded that the results of analyses using these parameters would provide valuable qualitative information on the disc mechanics. To represent the degeneration of the anulus fibrosus, the models included simulations of anular lesions - rim, radial and circumferential lesions. Degeneration of the nucleus may be characterised by a significant reduction in the hydrostatic nucleus pressure and a loss of hydration. This was simulated by removal of the hydrostatic nucleus pressure. Analyses were carried out using rotational loading conditions that were comparable to the ranges of motion observed physiologically. The results of these analyses showed that the removal of the hydrostatic nucleus pressure from an otherwise healthy disc resulted in a significant reduction in the stiffness of the disc. This indicated that when the nucleus pulposus is extremely degenerate, it offers no resistance to the deformation of the anulus and the mechanics of the disc are significantly changed. Specifically, the resistance to rotation offered by the intervertebral disc is reduced, which may affect the stability of the joint. When anular lesions were simulated in the finite element model they caused minimal changes in the peak moments resisted by the disc under rotational loading. This suggested that the removal of the nucleus pressure had a greater effect on the mechanics of the disc than the simulation of anular lesions. The results of the finite element model reproduced trends observed in both the healthy and degenerate intervertebral disc in terms of variations in nucleus pressure with loading conditions, axial displacement of the superior surface and bulge of the peripheral anulus. It was hypothesised that the reduced rotational stiffness of the degenerate disc may result in overload of the surrounding innervated osseoligamentous anatomy which may in turn cause back pain. Similarly back pain may result from the abnormal deformation of the innervated peripheral anulus in the vicinity of anular lesions. Furthermore, it was hypothesised that biochemical changes may result in the degeneration of the nucleus, which in turn may cause excessive strains in the anulus ground substance and lead to the initiation of permanent damage in the form of anular lesions. With further refinement of the components of the model and the methods used to define the anular lesions it was considered that this model would provide a powerful analysis tool for the investigation of the mechanics of intervertebral discs with and without significant degeneration.
17

Vytvoření a validace výpočtového FEM modelu kliky dveří pro crashové výpočty / Car Door Handle FEM Model Creation and Validation for Crash Simulations

Raffai, Peter January 2012 (has links)
The aim of this master’s thesis was to create a component model of a door handle stiffener used by the Volkswagen concern, which can be used for crash computations. Also to tune its parameters the way, its behavior corresponds the most to the real part’s. In the theoretical part the current regulations of the Euro NCAP are presented, concerning the testing and evaluation of the passive safety of new vehicles. Attention is focused on the evaluation of the side impact barrier tests, where the effect of the door handle stiffener’s damage is reflected the most. Shown are the reasons for the effort to simulate the real behavior of the stiffener, the factors, which initialized the born of the studied problem. The practical part starts with the creation of the FEM mesh of the part based on its 3D CAD model, also describes the requirements for the mesh quality, as well as the used tools and methods. Further on investigated are the characters of real damages of the door handle area during side impacts, based on which the component tests are proposed for the validation of the simulation model. Experimental research consists of the stiffener’s testing for simple bend and twist loads, three specimens each. After the execution of the tests the results get compared with the corresponding simulations. Modifications are made on the model according to the acquired results: refinement of the FEM mesh, new material model usage with failure for shell elements and definition of real material characteristics for the used thermoplastics. The latest obtained simulation dependencies are compared with the measured values again, the results are evaluated at last.
18

Low Velocity Impact Properties of Sandwich Insulated Panels with Textile - Reinforced Concrete Skin and Aerated Concrete Core

January 2012 (has links)
abstract: The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence of individual fibers and textile yarns. Part of this thesis is based on a material model developed here in Arizona State University to simulate experimental flexural response and back calculate tensile response. This concept is based on a constitutive law consisting of a tri-linear tension model with residual strength and a bilinear elastic perfectly plastic compression stress strain model. This parametric model was used to characterize Textile Reinforced Concrete (TRC) with aramid, carbon, alkali resistant glass, polypropylene TRC and hybrid systems of aramid and polypropylene. The same material model was also used to characterize long term durability issues with glass fiber reinforced concrete (GFRC). Historical data associated with effect of temperature dependency in aging of GFRC composites were used. An experimental study was conducted to understand the behavior of aerated concrete systems under high stain rate impact loading. Test setup was modeled on a free fall drop of an instrumented hammer using three point bending configuration. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric fiber-reinforced aerated concrete (FRAC) were tested and compared in terms of their impact behavior. The effect of impact energy on the mechanical properties was investigated for various drop heights and different specimen sizes. Both materials showed similar flexural load carrying capacity under impact, however, flexural toughness of fiber-reinforced aerated concrete was proved to be several degrees higher in magnitude than that provided by plain autoclaved aerated concrete. Effect of specimen size and drop height on the impact response of AAC and FRAC was studied and discussed. Results obtained were compared to the performance of sandwich beams with AR glass textile skins with aerated concrete core under similar impact conditions. After this extensive study it was concluded that this type of sandwich composite could be effectively used in low cost sustainable infrastructure projects. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2012
19

MODELING AND CHARACTERIZATION OF A GENERAL MULTIMECHANISM MATERIAL MODEL FOR ADVANCED ENGINEERING APPLICATIONS OF PRESSURE SENSITIVE MATERIALS

Soudah, Majd Ali Saleh 24 August 2021 (has links)
No description available.
20

Friction and material modelling in Sheet Metal Forming Simulations / Friktion och materialmodellering i simuleringar av plåtformning

Bentsrud, Herman January 2020 (has links)
In today’s car manufacturing industry, sheet metal forming is a important process that takes preparation, which is time consuming and complex when new processes are made. When new metal grades and alloys are provided to the industry, tests are conducted to determine it’s behaviour and strengths. This gives the data for complex material models that can approximate the metal behaviour in an accurate way in a simulation environment. One of the unknown factors from tests is the friction coefficient on the sheet metal. The software Triboform is able to provide an adaptable friction coefficient model that depends on multiple simulation and user input conditions. The problems that occur when acquiring data for the material model is that testing is time consuming and the friction model has to be adjusted to give accurate results. At Volvo Cars there are two material models used with their different advantages, BBC 2005 and Vegter 2017.The purpose with this work is to compare the two material models using the Triboform friction models implemented to see if any combination provides accurate simulation results and then create recommendations for which model is best suited for different cases. Some side studies is also done with an older Vegter model, a strain rate sensitive BBC 2005 model and a Triboform model on all simulation parts.The purpose is achieved by implementing the Triboform model in Autoform and run a simulation of a Limiting Dome Height (LDH) test with both material models and compare the results with experimental data for several different materials. The data that is directly compared from the LDH test is the major and minor strain from two perpendicular sections at four different stages and also the force from the punch tool. The material models will be evaluated by how it manages to mimic the strain behaviour of the metals and how it estimates the punch force.The results point towards an improvement of the accuracy for most of the metals tested and BBC 2005 is the better model if there’s available biaxial data from tests, Vegter 2017 is decent if there’s not. However Vegter 2017 is not a good option for aluminum alloys simulations when the punch force is compared. Side study also shows that Vegter 2017 is bit of a downgrade when it comes to strain values, compared to the old Vegter.The work, in summary shows a dynamic friction model can improve the accuracy for strain predictions in the simulation process. If there’s biaxial yield data available for the metal or if it’s an aluminum alloy, BBC 2005 is the superior choice, but if only tensile tests are available for metals, Vegter 2017 is a decent choice for some cases. / I dagens bilindustri är plåtmetalformning en viktig process som kräver förberedelser som är tidskonsumerande och komplex när nya processer tillkommer. När nya metallslag kommer in till industrin, så utförs tester för att avgöra dess egenskaper och styrka. Denna testdata används till materialmodeller som kan approximera metallens beteende på ett noggrant sätt i en simuleringsmiljö. Den okända faktorn från dessa test är friktionskoefficienten på plåten. Programvaran Triboform är kapabel att göra en dynamisk friktionsmodel som beror på användar- och simuleringsdata. Problemen som uppstår vid framtagning av data är att det är tidskonsumerande och flera simuleringar måste göras för att bestämma friktionen. Volvo Cars använder sig av två modeller med olika fördelar, BBC 2005 och Vegter 2017.Syftet med detta arbete är att jämföra de två materialmodellerna med Triboform modeller implementerat för att se om de påverkar noggrannheten i simuleringar och sedan förse rekommendationer för vilken modell passar bäst för olika fall. Några sidojobb i studien som görs är en jämförelse med gamla Vegter modellen, ett test med en modell som är känslig för töjningshastighet och test med att implementera Triboform modellen på alla pressverktyg.Detta utförs med att implementera Triboform modellerna i Autoform och köra en simulering på ett LDH-test med båda materialmodeller och jämföra resultaten med experimentell data för flera olika metaller. Data som skall jämföras från LDH-testet är första och andra huvudtöjningen i två vinkelräta sektioner i fyra processsteg och stämpelkraften genom hela processen. Modellerna kommer evalueras genom hur de lyckas imitera töjningens beteende och hur den estimerar stämpelkraften.Resultaten pekar mot en förbättring när Triboform är implementerat i simuleringar för de flesta metaller som ingår i testen och BBC 2005 är den model som föredras om det finns tillgänglig biaxiel spänning data från tester, Vegter 2017 är en duglig modell om dessa data inte finns. Vegter 2017 är dock inte ett bra alternativ när det kommer till jämförelse av töjning och stämpelkraften för aluminium. Sidojobb med gamla Vegter visar att den nya Vegter 2017 inte är en direkt förbättring med hänsyn till noggrannheter av krafter och töjningar.Arbetet visar att en dynamisk friktionsmodel kan förbättra prediktering av töjningar i simuleringar. Om det finns biaxiel data för metallen eller om det gäller att simulera aluminium är BBC 2005 det bättre altermativet, om det endast finns dragprovsdata för metallen så är Vegter 2017 duglig för vissa fall.

Page generated in 0.0842 seconds