• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vytvoření podpůrných výukových prostředků pro kurz Moderní počítačová grafika / Creating 3D models supporting Modern computer graphics course

Silber, Marek January 2015 (has links)
This thesis is divided into two parts, where the first part is focused on an overview and work with 3D software at Czech universities, it includes a comparison of the different programs and description of history of Blender programme which was the one chosen as support for teaching the Modern computer graphics course. The second part of the thesis is more focused on practical matters and describes the basic workings of the programme from the first start up, orientation in the different sections and the settings of the work space for the work itself. The thesis details basic transformation commands of change of location, rotation and change of scale of objects and editing commands like copying, deleting, hiding and duplication of individual objects including their theoretical descriptions. Work with lightings continues after the transformation commands including practical examples of different types of lighting. Work with materials and textures is described in the last two chapters. The goal of this thesis is to describe how to work with the Blender programme and basic work with objects and assigning individual materials and textures for objects and the lighting in a scene for people unfamiliar with the programme.
12

Hybride Materialmodellierung für ferroelektroelastische Keramiken

Stark, Sebastian 28 November 2016 (has links)
Ferroelektroelastische Keramiken besitzen aufgrund ihrer elektromechanischen Koppeleigenschaften Bedeutung in der Sensorik und Aktuatorik. Zur Vorhersage der Bauteileigenschaften und Beurteilung der Bauteilfestigkeit werden Materialmodelle benötigt. In der vorliegenden Arbeit wird ein mehrachsiges, ratenunabhängiges Materialmodell für ferroelektroelastische Keramiken einschließlich der zur effizienten Lösung notwendigen numerischen Methoden ausgearbeitet. Dabei erfolgt die Einbeziehung von Ansätzen aus der makroskopischen phänomenologischen und mikroelektromechanischen phänomenologischen Modellierung. Das resultierende Materialmodell stellt einen Versuch dar, die Vorteile beider Betrachtungsweisen zu vereinen und trägt deshalb die Bezeichnung "hybrid". In einem ersten Beispiel wird gezeigt, dass das hybride Materialmodell die für Barium-Titanat-Keramiken experimentell beobachtete Materialantwort reproduzieren kann. In einem zweiten Beispiel erfolgt die Anwendung auf morphotrope PZT-Keramiken. Dabei wird die in jüngerer Vergangenheit entdeckte monokline Phase zusammen mit der elektronenmikroskopisch beobachteten hierarchischen Struktur von Mikro- und Nanodomänen in vereinfachter Weise berücksichtigt. Auf Grundlage der getroffenen Modellannahmen gelingt es, die experimentell gemessene makroskopische Materialantwort der morphotropen PZT-Keramik PIC151 (PI Ceramic GmbH, Lederhose, Deutschland) für ausgewählte Lastfälle mit guter Genauigkeit vorherzusagen. / Ferroelectroelastic ceramics are used in sensor and actuator applications due to their electromechanical coupling properties. In order to predict the behavior of components or to assess their strength, material models are required. In the present work, a multi-axial, rate-independent material model for ferroelectroelastic ceramics is elaborated. This includes the development of efficient numerical solution methods. By incorporating ideas from known macroscopic phenomenological and micro-electromechanical phenomenological models into the novel model, it is attempted to combine the advantages of both approaches. In a first example, it is shown that the hybrid model can reproduce the experimentally observed material response of barium titanate ceramics. In a second example, the model is applied to morphotropic PZT ceramics. In this context, the recently discovered monoclinic phase as well as the hierarchical structure of micro-domains and nano-domains observed by means of electron microscopy are taken into account in a simplified way. Based on the assumptions made, the experimentally measured material response of the morphotropic PZT ceramic PIC151 (PI Ceramic GmbH, Lederhose, Germany) is predicted with reasonable accuracy for selected load cases.
13

Development and characterization of polymer- metallic powder feedstocks for micro-injection molding / Développement et caractérisation de mélanges polymères-poudres métalliques pour le micro moulage par injection

Kong, Xiangji 07 February 2011 (has links)
Le micro-moulage par Injection de Poudres (Micro-PIM) est l’une des technologies permettant de réaliser des micro-composants de très petites dimensions, associés à la miniaturisation et la fonctionnalisation dans différents domaines d’applications. La thèse concerne l’élaboration et la caractérisation de mélanges basés sur des poudres d’acier inoxydable de type 316L, l’identification des paramètres physiques associés à l’étape de densification est traitée. Des modélisations physiques et des simulations numériques de l’étape de densification par diffusion à l’état solide, sont ensuite proposées.De nouvelles formulations de mélanges à base de liants polymériques ont été développées pour différentes granulométries de poudres d’acier inoxydable de type 316L (5 µm et 16 µm). Les différents mélanges élaborés ont été élaborés et validés grâce à des comparatifs entre couples de mélangeages et courbes de viscosité de cisaillement. Les mélanges élaborés avec une formulation de base composée de polypropylène, de cire paraffine et d’acide stéarique, sont adaptés pour les deux types de poudre, et conduisent à des résultats significatifs pour les différents tests réalisés, conduisant à un couple de mélangeage et à une viscosité de cisaillement relativement faibles par rapport aux autres formulations. Le taux de charge critique obtenu pour l’acier inoxydable 316L (5 µm), avec la formulation optimale, est de 68% et a été déterminé par différentes méthodes. Les essais de micro-injection pour le mono-matériau (316L mélange) et les bi-matériaux (mélange de 316 L et Cu) ont été analysés en détail. Des tests d’homogénéité ont été réalisés avant et après l’étape d’injection.Un modèle thermo-élasto-viscoplastique approprié pour modéliser l’étape de densification a été utilisé pour la simulation de la densification des micro-composants. Les paramètres d’identification du modèle physique ont été identifiés pour des mélanges de poudres d’acier 316L (5 µm), pour différents taux de charge (62%, 64% et 66%). Des essais de flexion 3 points et de compression ont été réalisé à l’intérieur d’un dilatomètre vertical avec trois cinétiques de densification (5 °C/min, 10 °C/min et 15 °C/min). Les résultats obtenus par dilatométrie, ont permis l’identification du module de viscosité de cisaillement G, du module de compressibilité K, et de la contrainte de densification σs, Le modèle de comportement associé à la densification, incluant les paramètres identifiés a été implémenté dans le code éléments finis Abaqus©. Des éléments finis adaptés ont été utilisés, tant pour le support, que les quatre micro-éprouvettes de référence. Les simulations de l’étape de densification pour trois différentes cinétiques (5 °C/min, 10 °C/min et 15 °C/min) à 1200°C, ont été réalisées pour l’ensemble des micro-composants dont les taux de charge correspondent respectivement à 62%, 64% et 66%. Les retraits et densités relatives des micro-composants obtenus par simulation sont en très bonne corrélation avec les résultats expérimentaux / Micro-Powder Injection Moulding (Micro-PIM) technology is one of the key technologies that permit to fit with the increasing demands for smaller parts associated to miniaturization and functionalization in different application fields. The thesis focuses first on the elaboration and characterization of polymer-powder mixtures based on 316L stainless steel powders, and then on the identification of physical and material parameters related to the sintering stage and to the numerical simulations of the sintering process. Mixtures formulation with new binder systems based on different polymeric components have been developed for 316L stainless steel powders (5 µm and 16 µm). The characterization of the resulting mixtures for each group is carried out using mixing torque tests and viscosity tests. The mixture associated to the formulation comprising polypropylene + paraffin wax + stearic acid is well adapted for both powders and has been retained in the subsequent tests, due to the low value of the mixing torque and shear viscosity. The critical powder volume loading with 316L stainless steel powder (5 µm) according to the retained formulation has been established to 68% using four different methods. Micro mono-material injection (with 316L stainless steel mélange) and bi-material injection (with 316L stainless steel mélange and Cu mélange) are properly investigated. Homogeneity tests are observed for mixtures before and after injection. A physical model well suited for sintering stage is proposed for the simulation of sintering stage. The identification of physical parameters associated to proposed model are defined from the sintering stages in considering 316L stainless steel (5 µm)mixtures with various powder volume loadings (62%, 64% and 66%). Beam-bending tests and free sintering tests and thermo-Mechanical-Analyses (TMA) have also investigated. Three sintering stages corresponding to heating rates at 5 °C/min, 10 °C/min and 15 °C/min are used during both beam-bending tests and free sintering tests. On basis of the results obtained from dilatometry measurements, the shear viscosity module G, the bulk viscosity module K and the sintering stress σs are identified using Matlab® software. Afterwards, the sintering model is implemented in the Abaqus® finite element code, and appropriate finite elements have been used for the support and micro-specimens, respectively. The physical material parameters resulting from the identification experiments are used to establish the proper 316L stainless steel mixture, in combination with G, K and σs parameters. Finally, the sintering stages up to 1200 °C with three heating rates (5 °C/min, 10 °C/min and 15 °C/min) are also simulated corresponding to the four micro-specimen types (powder volume loading of 62%, 64% and 66%). The simulated shrinkages and relative densities of the sintered micro-specimens are compared to the experimental results indicating a proper agreement
14

Evaluation of the Performance of Multi-Component Cementitious Composites: Multi-Scale Experimental Characterization and Numerical Simulation

January 2018 (has links)
abstract: Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others. The current study focuses on the fundamental understanding of such functional composites, from their microstructural design to macro-scale application. More specifically, this study investigates three different categories of functional cementitious composites. First, it discusses the differences between cementitious systems containing interground and blended limestone with and without alumina. The interground systems are found to outperform the blended systems due to differential grinding of limestone. A novel approach to deduce the particle size distribution of limestone and cement in the interground systems is proposed. Secondly, the study delves into the realm of ultra-high performance concrete, a novel material which possesses extremely high compressive-, tensile- and flexural-strength and service life as compared to regular concrete. The study presents a novel first principles-based paradigm to design economical ultra-high performance concretes using locally available materials. In the final part, the study addresses the thermal benefits of a novel type of concrete containing phase change materials. A software package was designed to perform numerical simulations to analyze temperature profiles and thermal stresses in concrete structures containing PCMs. The design of these materials is accompanied by material characterization of cementitious binders. This has been accomplished using techniques that involve measurement of heat evolution (isothermal calorimetry), determination and quantification of reaction products (thermo-gravimetric analysis, x-ray diffraction, micro-indentation, scanning electron microscopy, energy-dispersive x-ray spectroscopy) and evaluation of pore-size distribution (mercury intrusion porosimetry). In addition, macro-scale testing has been carried out to determine compression, flexure and durability response. Numerical simulations have been carried out to understand hydration of cementitious composites, determine optimum particle packing and determine the thermal performance of these composites. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2018
15

Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer Beanspruchung

Beyer, Frank R., Zastrau, Bernd W. 02 December 2011 (has links) (PDF)
Zur Bemessung und Simulation von flächigen Textilbetonstrukturen werden Berechnungsmodelle benötigt, die das Materialverhalten unter biaxialer Beanspruchung abbilden können. Für eindimensionale Strukturen existieren einige Modelle, zu deren Weiterentwicklung eine Erweiterung zur Abbildung des biaxialen Materialverhaltens vorgeschlagen wird. In diesem Beitrag werden die notwendigen Erweiterungen und deren Umsetzbarkeit bei der Modellierung diskutiert und bewertet. / For design and simulation of plane textile reinforced concrete structures mechanical models representing the material behaviour under biaxial loading are necessary. For one-dimensional structures several models were presented in the past. For their further development an extension for biaxial material behaviour is usually proposed. In this paper the required extensions are discussed and their feasibility for modelling is assessed.
16

Modellierung des Bruchverhaltens austenitischer TRIP-Stähle

Burgold, Andreas 24 October 2019 (has links)
Das Promotionsthema war die numerische Untersuchung des Einflusses der mechanisch induzierten martensitischen Phasenumwandlung auf das Bruchverhalten hochlegierter TRIP-Stähle. Die Analyse der Spannungsfelder vor einer abstumpfenden Rissspitze hat ergeben, dass die Phasenumwandlung zu höheren rissöffnenden Spannungen führt. Außerdem wurden charakteristische Spannungsverläufe mit Wendepunkten beobachtet. Für duktiles Versagen wurde ein positiver Einfluss der Phasenumwandlung geschlussfolgert, da die umwandlungsinduzierte Verfestigung das Porenwachstum in der Bruchprozesszone erschwert. Dies wurde an Hand mikromechanischer Simulationen der duktilen Rissausbreitung demonstriert. Im Rahmen der Theorie materieller Kräfte konnte eine abschirmende Wirkung des TRIP-Effekts auf die Rissspitze nachgewiesen werden. Durch Phasenumwandlung wird Arbeit dissipiert, die nicht mehr für Rissfortschritt verfügbar ist. Die energetische Triebkraft für Risswachstum wird demzufolge reduziert. Die Rissausbreitung im TRIP-Stahl wurde mit einer Kohäsivzone modelliert. Die Parameter des Kohäsivzonenmodells charakterisieren den Bruchprozess und konnten unter Verwendung experimenteller Daten identifiziert werden. Um zukünftig die Rolle der Phasenumwandlung bei Ermüdungsrisswachstum untersuchen zu können, wurde ein Materialmodell für TRIP-Stähle unter zyklischer Beanspruchung entwickelt. Die erforderlichen Materialparameter wurden mit Hilfe der Daten aus Wechselverformungsversuchen bestimmt. / This thesis is focused on the numerical investigation of the fracture behavior of high alloy austenitic TRIP-steels and especially on the effect of mechanically induced martensitic phase transformation. The analysis of stress fields in front of a blunting crack tip has shown that phase transformation leads to higher crack opening stresses. Additionally, characteristic courses of the stress components with inflection points were observed. A positive influence of phase transformation on ductile fracture was concluded, because transformation induced hardening retards void growth in the fracture process zone. This was demonstrated by micromechanical simulations of ductile crack extension. In order to investigate the shielding effect of phase transformation on the crack tip, the theory of material forces was applied. Mechanical work is dissipated due to the TRIP-effect, which is no longer available for crack growth. Hence, the energetic driving force for fracture is reduced. Furthermore, crack extension is modeled with a cohesive zone. The parameters of the cohesive zone model, which characterize the fracture process, are identified based on experimental data. In future work the role of phase transformation during fatigue crack growth should by studied. Therefore, a material model for TRIP-steels under cyclic loading was developed. The associated material parameters were estimated based on the results of cyclic deformation experiments.
17

Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer Beanspruchung

Beyer, Frank R., Zastrau, Bernd W. January 2011 (has links)
Zur Bemessung und Simulation von flächigen Textilbetonstrukturen werden Berechnungsmodelle benötigt, die das Materialverhalten unter biaxialer Beanspruchung abbilden können. Für eindimensionale Strukturen existieren einige Modelle, zu deren Weiterentwicklung eine Erweiterung zur Abbildung des biaxialen Materialverhaltens vorgeschlagen wird. In diesem Beitrag werden die notwendigen Erweiterungen und deren Umsetzbarkeit bei der Modellierung diskutiert und bewertet. / For design and simulation of plane textile reinforced concrete structures mechanical models representing the material behaviour under biaxial loading are necessary. For one-dimensional structures several models were presented in the past. For their further development an extension for biaxial material behaviour is usually proposed. In this paper the required extensions are discussed and their feasibility for modelling is assessed.
18

Characterization of a 3D Multi-Mechanism SMA Material Model for the Prediction of the Cyclic "Evolutionary" Response of NiTi for Use in Actuations

Dhakal, Binod January 2013 (has links)
No description available.
19

Coupled Field Modeling of Gas Tungsten Arc Welding

Sen, Debamoy 08 August 2012 (has links)
Welding is used extensively in aerospace, automotive, chemical, manufacturing, electronic and power-generation industries. Thermally-induced residual stresses due to welding can significantly impair the performance and reliability of welded structures. Numerical simulation of weld pool dynamics is important as experimental measurements of velocities and temperature profiles are difficult due to the small size of the weld pool and the presence of the arc. From a structural integrity perspective of welded structures, it is necessary to have an accurate spatial and temporal thermal distribution in the welded structure before stress analysis is performed. Existing research on weld pool dynamics simulation has ignored the effect of fluid flow in the weld pool on the temperature field of the welded joint. Previous research has established that the weld pool depth/width (D/W) ratio and Heat Affected Zone (HAZ) are significantly altered by the weld pool dynamics. Hence, for a more accurate estimation of the thermally-induced stresses it is desired to incorporate the weld pool dynamics into the analysis. Moreover, the effects of microstructure evolution in the HAZ on the mechanical behavior of the structure need to be included in the analysis for better mechanical response prediction. In this study, a three-dimensional model for the thermo-mechanical analysis of Gas Tungsten Arc (GTA) welding of thin stainless steel butt-joint plates has been developed. The model incorporates the effects of thermal energy redistribution through weld pool dynamics into the structural behavior calculations. Through material modeling the effects of microstructure change/phase transformation are indirectly included in the model. The developed weld pool dynamics model includes the effects of current, arc length, and electrode angle on the heat flux and current density distributions. All the major weld pool driving forces are included, namely surface tension gradient, plasma drag force, electromagnetic force, and buoyancy. The weld D/W predictions are validated with experimental results. They agree well. The effects of welding parameters (like welding speed, current, arc length, etc.) on the weld D/W ratio are documented. The workpiece deformation and stress distributions are also highlighted. The transverse and longitudinal residual stress distribution plots across the weld bead and their variations with welding speed and current are also provided. The mathematical framework developed here serves as a robust tool for better prediction of weld D/W ratio and thermally-induced stress evolution and distribution in a welded structure by coupling the different fields in a welding process. / Ph. D.
20

Modellierung des Materialverhaltens Magnetorheologischer Fluide unter Verwendung der Fourier-Transformations Rheologie

Boisly, Martin 30 November 2018 (has links)
In dieser Dissertation wird das viskoplastische Schubverhalten eines magnetorheologischen Fluids (MRF) modelliert. Mithilfe eines phänomenologischen Modellierungsansatzes auf Basis nichtlinearer rheologischer Elemente können die gemessenen Fließkurven sowie Speicher- und Verlustmoduli abgebildet werden. Ein MRF ist ein Material mit fest-flüssig Übergang. Es besitzt von einem Magnetfeld abhängige Materialeigenschaften. Um diese beschreiben zu können, wird zunächst eine phänomenologische Stoffklassifizierung eingeführt. Auf deren Grundlage teilen sich Stoffe allgemein in Flüssigkeiten, Festkörper und Materialien mit fest-flüssig Übergang auf. Zur Beschreibung des Materialverhaltens von MRF werden drei viskoplastische Modelle formuliert und gegenübergestellt. Zur Identifikation der Materialparameter wird eine Identifikationsstrategie auf der Grundlage charakteristischer Punkte entwickelt. Charakteristische Punkte sind exklusive Punkte von Materialfunktionen, die analytisch beschrieben und ohne Weiteres experimentell ermittelt werden können. Analytische Ausdrücke für charakteristische Punkte der Speicher- und Verlustmoduli werden über das Analogieprinzip unter Verwendung von Lissajous Diagrammen abgeleitet. Infolgedessen können die Materialparameter durch das Auswerten algebraischer Zusammenhänge identifiziert werden, ohne nichtlineare Optimierungsverfahren anwenden zu müssen. Hierbei stellt die Fließspannung einen signifikanten Materialparameter dar. Deswegen werden die Standardverfahren zur Bestimmung der Fließspannung auf rheologische Modelle angewendet und bewertet.

Page generated in 0.0713 seconds