• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 10
  • 9
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 408
  • 408
  • 157
  • 83
  • 81
  • 77
  • 55
  • 51
  • 38
  • 37
  • 37
  • 33
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Mercury Transportation in Soil Using Gypsum from Flue Gas Desulphurization Unit in Coal-Fired Power Plant

Wang, Kelin 01 July 2012 (has links)
This work investigates mercury flux in soil amended by gypsum from flue gas desulphurization (FGD) units of coal-fired power plants. There are two phases of this research, including field and greenhouse studies. Previous studies indicate that FGD gypsum could increase corn yield, but may lead to more mercury uptake by corn. Recent studies have been carried out in greenhouses to investigate mercury transport in FGD gypsum treated soil. Major aspects include uptake of mercury by plants and emission of mercury into the atmosphere based on application rates of FGD gypsum. Additional aspects include rainfall, temperature, soil, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentration in the soil, as well as, increased mercury emission into the atmosphere, and increased mercury levels in plants, especially roots and leaves. Soil properties and plant species also played important roles in mercury transport. In addition, it was also found that increased water and higher temperatures may contribute to mercury emission in the atmosphere. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration within the soil. Mercury concentration in the stem of plants was found to be increased and then plateaued upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from mercury in the surrounding atmosphere.
62

Corrosion properties of aluminium alloys and surface treated alloys in tap water

Gustafsson, Sofia January 2011 (has links)
The aim of this thesis is to obtain a basic knowledge of the factors that affect corrosion of aluminium in tap water for different kinds of applications like water pipes for tap water, solar systems, HVAC&R-applications (like fan coil units on chillers) and heat sinks for electronic or industrial applications. Open systems are used in some applications and closed systems in others. There is a clear difference in the corrosion behaviour of these two systems. The main reasons for this difference are that the content of oxygen differs between the two systems and also that inhibitors can be used in closed systems to hinder corrosion. In this thesis focus will be on corrosion in open systems. The corrosion properties in tap water for different alloys of aluminium and different surface treatments have been examined. The influences on corrosion of the oxygen content in water and the iron content in aluminium alloys have been investigated. The corrosion properties of an aluminium alloy in deionised water have also been examined.
63

Kinetic Studies of the Sulfoxidation of Aryl Methyl Sulfides by Trans-Dioxoruthenium(VI) Porphyrin Complexes

Abebrese, Chris 01 December 2009 (has links)
The development of an efficient, catalytically active, biomimetic model for cytochrome P-450 enzymes has been an area of intense research activity. Ruthenium porphyrin complexes have been the center of this research and have successfully been utilized, as catalysts, in major oxidation reactions such as the hydroxylation of alkanes, the epoxidation of alkenes and aromatic rings, and the N-oxidation of amines, among others. In this project, the kinetics of two-electron sulfoxidation of para-substituted phenyl methyl sulfides to the corresponding sulfoxides with well-characterized trans-dioxoruthenium(VI) porphyrin complexes were studied by rapid stopped-flow spectroscopy. The substituent effect in sulfides and in dioxoruthenium(VI) complexes were also kinetically investigated. The low-reactive trans-dioxoruthenium(VI) porphyrin complexes (3a-b) were synthesized from the oxidation of their carbonylruthenium(II) porphyrin precursors with m-chloroperoxybenzoic acid (m-CPBA) and characterized spectroscopically by 1H-NMR, IR, and UV-vis. The low-reactivity of these complexes makes them suitable for kinetic studies. The sulfoxidation with the trans-dioxoruthenium(VI) species followed a pseudo-first order kinetic decay from RuVI to RuIV species with no accumulation of intermediates. The reactivity order in the series of dioxoruthenium(VI) complexes follows 3b > 3a >3c, which is consistent with expectations based on the electrophilic nature of high-valent metal-oxo species. Steric effect of the substituents on the complexes also affected the reactivity order. The kinetic results revealed that the sulfoxidation reaction with these well-characterized dioxoruthenium(VI) complexes is 3 – 4 orders of magnitude faster than the epoxidation reaction with the same complexes under similar conditions.
64

Catalyst loaded porous membranes for environmental applications : Smart Membranes

Ren, Bin January 2007 (has links)
<p>This project involves the fabrication and testing of microporous, polymer membranes designed to remove minute amounts of toxic air pollutants such as formaldehyde from air streams. The hypothesis to be tested is that active, the silver contained within the porous polymer membranes results in high formaldehyde retention.</p><p>Monolayers consist of different sizes of sPS particles are assembled first on the silicon wafers by spin coating method and convective assembly method, respectively. Then each kind of monolayer with one dimension of sPS particles is deposited with a nanometer scaled silver thin film with a bench top metal evaporator. The porous membranes are produced by assembly of close-packed colloidal crystals of silver capped polystyrene template particles and subsequent infiltration with polyurethane prepolymer. The prepolymer is cured by UV exposure. The sPS particles are removed from the particle polymer membrane by treatment with organic solvents resulting in the formation of inverse opal structures. Silver does not dissolve in the organic solvents and cannot leave the pores due to the small size of connecting holes in an inverse opal. All the monolayers, cylindrical colloidal crystals and microcapillaries after infiltration of polyurethane had been characterized by optical microscope, and the porous membranes had been characterized by SEM.</p><p>The application of porous membranes with silver caps is to absorb formaldehyde in the air, while in fact the silver caps are oxidized and become Ag2O, which will initiate a gas-phase/solid reaction with formaldehyde. In the future, TiO2 will be applied together with Ag2O, since TiO2 is another good absorbent for formaldehyde</p>
65

Polymer Nanocomposite Analysis and Optimization for Renewable Energy and Materials

Henry, Nathan Walter 01 December 2011 (has links)
Polymer nanocomposites are an important research interest in the area of engineering and functional materials, including the search for more environmentally materials for renewable energy and materials. The ability to analyze and optimize morphology is crucial to realizing their potential, since the distribution of materials in the composite strongly influences its properties. This dissertation presents research into three different polymer nanocomposite systems with three different applications that underscore the need to understand and control the composite morphology to succeed. The first project details work on development of a copolymer compatibilizer to enhance the dispersion of the plant-derived biopolymer lignin in composite blends with polystyrene. The copolymer was designed with hydroxyl functionality that can form hydrogen bonds with lignin, and the effect of modulating the density of these groups was investigated, both on bulk dispersion and interfacial mixing. The second project presented concerns resolving the interfacial morphology of composite bulk heterojunction organic photovoltaic devices based on a polythiophene-based photoactive polymer and a modified carbon fullerene, which are archetypical of the highest performing cells yet produced. Neutron reflectivity was extensively employed to probe the interfacial width and degree of intermixing between the components to elucidate the morphological impact on device performance. The final project involves modifying nanoscale cellulose crystallites, dubbed nanowhiskers, by replacing a portion of the hydroxyl groups with acetate groups to improve their dispersion in polymethyl methacrylate. Neutron reflectivity was again employed to probe the interface between the two materials to observe and quantify intermixing.
66

Photocuring of multifunctional monomers initiated by camphorquinone/amine systems for application in dental restorative resins /

Nie, Jun, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 5 uppsatser.
67

Μελέτη των τριαδικών συστημάτων Zn(II)/RCO2-/N-Δότες: συμβολή σε θέματα βιοανόργανης χημείας και χημείας μοριακών υλικών

Λαλιώτη, Νικολία 15 March 2010 (has links)
- / -
68

Μοντελοποίηση βιολογικών δράσεων Zn(II) και Cd(II)

Κατσουλάκου, Ευγενία Κ. 04 August 2010 (has links)
- / -
69

¹⁷O Solid-state NMR spectroscopy of functional oxides for energy conversion

Halat, David Michael January 2018 (has links)
The main aim of this thesis is the development of $^{17}$O solid-state nuclear magnetic resonance (NMR) spectroscopic techniques to study the local structure and ion dynamics of functional oxide materials for applications in energy conversion, in particular as electrodes and electrolytes in solid oxide fuel cells (SOFCs). Broadly, the work comprises two related areas: (1) application of a combined experimental and computational methodology to enable the first $^{17}$O solid-state NMR studies of paramagnetic oxides, in particular a class of perovskite-derived structures used as mixed ionic-electronic conductors (MIECs) for SOFC cathodes, and (2) further uses of multinuclear variable-temperature NMR spectroscopy, with emphasis on $^{17}$O NMR results, to elucidate mechanistic details of oxide-ion motion and sublattice exchange in a novel family of promising SOFC electrolyte materials based on $\delta$-Bi$_{2}$O$_{3}$. In the first section, $^{17}$O magic-angle spinning (MAS) NMR spectra of the paramagnetic MIEC, La$_{2}$NiO$_{4+\delta}$, are presented and rationalized with the aid of periodic DFT calculations. Advanced NMR pulse programming and quadrupolar filtering techniques are coupled to extract high-resolution spectra. In particular, these data reveal local structural distortions in La$_{2}$NiO$_{4+\delta}$ that arise from incorporation of interstitial oxide defects. Moreover, variable-temperature spectra indicate the onset of oxide-ion motion involving the interstitials at 130 °C, which is linked to an orthorhombic$-$tetragonal phase transition. By analyzing the ion dynamics on the spectral timescale, specific motional mechanisms are elucidated that prove relevant to understanding the functionality and conductivity of this phase. Next, a similar methodology is applied to the Sr-doped analogues, La$_{2-x}$Sr$_{x}$NiO$_{4+\delta}$, in an exploration of the defect chemistry and electronic structure of these phases (0 $\leq {x} \leq$ 1). By following the doping-induced evolution of spectral features assigned to interstitial and equatorial oxygen environments, changes in the ionic and electronic conductivity, respectively, are rationalized. This approach has been extended to the acquisition and assignment of $^{17}$O NMR spectra of isostructural Sm$_{2-x}$Sr$_{x}$NiO$_{4+\delta}$ and Pr$_{2-x}$Sr$_{x}$NiO$_{4+\delta}$ phases, promising SOFC cathode materials that exhibit paramagnetism on the A site (A = Sm, Pr). The final section details the characterization of oxide-ion motion in the fluorite-type phases Bi$_{1-x}$V$_{x}$O$_{1.5+x}$ and Bi$_{1-x}$P$_{x}$O$_{1.5+x}$ ($x$ = 0.087 and 0.148) developed as SOFC electrolytes. Variable-temperature NMR experiments between room temperature and 923 K reveal two distinct mechanisms. For the V-doped phases, an oxide-ion conduction mechanism is observed that involves oxygen exchange between the Bi-O sublattice and rapidly rotating VO$_{4}$ tetrahedral units. The more poorly conducting P-doped phase exhibits only vacancy conduction with no evidence of sublattice exchange, a result ascribed to the differing propensities of the dopants to undergo variable oxygen coordination. These initial insights suggest chemical design rules to improve the next generation of oxide-ion conducting materials.
70

Deposition of Al-doped ZnO films by high power impulse magnetron sputtering

Mickan, Martin January 2017 (has links)
Transparent conducting oxides (TCOs) are an important class of materials with many applications such as low emissivity coatings, or transparent electrodes for photovoltaics and flat panel displays. Among the possible TCO materials, Al-doped ZnO (AZO) is studied due to its relatively low cost and abundance of the raw materials. Thin films of AZO are commonly produced using physical vapour deposition techniques such as magnetron sputtering. However, there is a problem with the homogeneity of the films using reactive direct current magnetron sputtering (DCMS). This homogeneity problem can be related to the bombardment of the growing film with negative oxygen ions, that can cause additional acceptor defects and the formation of insulating secondary phases. In this work AZO films are deposited by high power impulse magnetron sputtering (HiPIMS), a technique in which high instantaneous current densities are achieved by short pulses of low duty cycle. In the first part of this thesis, the possibility to improve the homogeneity of the deposited AZO films by using HiPIMS is demonstrated. This improvement can be related to the high instantaneous sputtering rate during the HiPIMS pulses, so the process can take place in the metal mode. This allows for a lower oxygen ion bombardment of the growing film, which can help to avoid the formation of secondary phases. Another problem of AZO is the stability of the properties in humid environments. To assess this problem, the degradation of the electrical properties after an aging procedure was investigated for films deposited by both DCMS and by HiPIMS. A method was proposed, to restore the properties of the films, using a low temperature annealing under N2 atmosphere. The improvement of the electrical properties of the films could be related to a diffusion process, where water is diffusing out of the films. Then, the influence of the substrate temperature on the properties of AZO films deposited by HiPIMS was studied. The electrical, optical and structural properties were found to improve with increasing substrate temperature up to 600 ◦C. This improvement can be mostly explained by the increase in crystalline quality and the annealing of defects. Finally, the deposition of AZO films on flexible PET substrates was investigated. The films are growing as a thick porous layer of preferentially c-axis oriented columns on top of a thin dense seed layer. The evolution of the sheet resistance of the films after bending the films with different radii was studied. There is an increase in the sheet resistance of the films with decreasing bending radius, that is less pronounced for thicker films.

Page generated in 0.0967 seconds