• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mercury Transportation in Soil Using Gypsum from Flue Gas Desulphurization Unit in Coal-Fired Power Plant

Wang, Kelin 01 July 2012 (has links)
This work investigates mercury flux in soil amended by gypsum from flue gas desulphurization (FGD) units of coal-fired power plants. There are two phases of this research, including field and greenhouse studies. Previous studies indicate that FGD gypsum could increase corn yield, but may lead to more mercury uptake by corn. Recent studies have been carried out in greenhouses to investigate mercury transport in FGD gypsum treated soil. Major aspects include uptake of mercury by plants and emission of mercury into the atmosphere based on application rates of FGD gypsum. Additional aspects include rainfall, temperature, soil, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentration in the soil, as well as, increased mercury emission into the atmosphere, and increased mercury levels in plants, especially roots and leaves. Soil properties and plant species also played important roles in mercury transport. In addition, it was also found that increased water and higher temperatures may contribute to mercury emission in the atmosphere. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration within the soil. Mercury concentration in the stem of plants was found to be increased and then plateaued upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from mercury in the surrounding atmosphere.
2

Potential Use of Flue Gas Desulfurization Gypsum in a Flowable Grout for Re-mining of Abandoned Coal Mines

Kirch, James Paul 20 October 2011 (has links)
No description available.
3

PRODUCTION OF LOW-ENERGY, 100% BY-PRODUCT CEMENT UTILIZING COAL COMBUSTION PRODUCTS

Rust, David E. 01 January 2008 (has links)
The ever-increasing quantity of by-products generated from burning coal in the production of electricity has brought about the need for new areas of utilization. This study examined the use of FGD gypsum and fluidized bed combustion ash along with Class F fly ash in the production of low-energy, 100% by-product cement blends. The cement blends used the advantageous properties of the by-product materials to create cementing properties rather than energy intensive clinker used in ordinary portland cement. The FGD gypsum was converted to hemihydrate which rapidly hydrated to provide the cement with early strength gains, whilst the fluidized bed combustion ash reacted with the Class F fly ash to form pozzolanic cementitious phases which provided the longer-term compressive strength and possibly resistance to weathering. The rate of compressive strength gains and minimizing detrimental expansion were two properties of particular interest in the study. Chemical admixtures were used to improve the compressive strengths of the cement mortars and decrease their solubility.
4

An Evaluation of Flue Gas Desulfurization Gypsum for Abandoned Mine Land Reclamation

Pasini, Rachael A. 25 September 2009 (has links)
No description available.
5

Potential Utilization of FGD Gypsum for Reclamation of Abandoned Highwalls

Modi, Deepa 22 October 2010 (has links)
No description available.
6

Miljöoptimera avfallsindustrin i Sverige : - återvinn restprodukten gips

Quintana, Angelica, Yngstrand, Sofia January 2011 (has links)
One of the most common ways to produce heat and electricity in Europe today is by the incineration of waste or combustion of coal. These materials can be very sulfurous and during combustion sulfur dioxide is produced. This is an environmental and health related toxic substance which is why power plants have strict regulations on removing it from the flue gas. Sulfur dioxide is removed from the flue gas by adding a limestone reagent. The sulfur dioxide reacts with the limestone and the synthetic product obtained is “Flue Gas Desulfurization gypsum”. This byproduct, from combustion, provides an environmentally friendly solution when used in building material such as plasterboards. The FGD gypsum that is being used in different types of building materials does not derive from waste incinerated power plants. We have more than 30 of these in Sweden and some of them get FGD gypsum as a byproduct. The purpose of this thesis was to find out whether a particular waste incineration plant in Sweden can reuse their gypsum waste instead of disposing it at landfill.
7

Systematic Selection and Application of Backfill in Underground Mines

Masniyom, Manoon 27 July 2009 (has links) (PDF)
The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash and FGD-gypsum from power plants, natural and synthetic anhydrite. The different material mixtures investigated can be used as a technically and economically viable backfill for underground mines. In summary, the systematic selection of backfill materials from by-products, mine waste and tailings from the mineral processing of mining industry and other industries were suited as a backfill material for test field in China coal fires and recommended for underground potash mines in Thailand.
8

[pt] AVALIAÇÃO TÉCNICA PARA USO DO GESSO FGD COMO ADITIVO RETARDADOR DO TEMPO DE PEGA EM CIMENTO PORTLAND / [en] TECHNICAL EVALUATION OF THE FGD GYPSUM FOR USE AS AN ADDITIVE FOR SETTING TIME CONTROL OF PORTLAND CEMENT

28 October 2021 (has links)
[pt] SO2 é conhecido com um grande contaminante ambiental e muitos países estabeleceram regras para o controle da sua emissão para a atmosfera. Como resultado a maioria das plantas fornecedoras de energia foram equipadas com instalações de dessulfurização de gases de combustão. Embora esta tecnologia seja bem sucedida no abate de SO2, ela gera uma grande quantidade de gesso FGD (flue gas desulfurization) como resíduo. Grandes esforços estão sendo feitos para aproveitar este resíduo (gesso FGD). No presente estudo o gesso FGD foi avaliado como aditivo retardador do tempo de pega substituindo o gesso natural na fabricação do cimento Portland (CP II E-32). Os resultados da caracterização físico-química e morfológica do gesso natural e de gesso FGD identificam um material de alta pureza, sulfato de cálcio di-hidratado para o gesso natural, e presença principalmente de bassanita (CaSO4.0,6H2O) e hannebachite (CaSO3.0,5H2O) com baixas concentrações de impurezas no gesso FGD. Baseado nos resultados, o gesso FGD é uma alternativa adequada para substituir o gesso natural. O tempo de pega mostrou cerca de uma hora de retardo em comparação com gesso natural e seu efeito sobre a resistência à compressão para as amostras de 3, 7 e 28 dias depende da composição das misturas, atingindo um valor máximo para a argamassa com 2,1 porcento de gesso FGD e 1,4 porcentode gesso natural. Também foi estimado o impacto ambiental do gesso FGD, examinando a liberação de seus constituintes inorgânicos seguindo a norma ABNT NBR 10004:2004 e classificando o resíduo como não perigoso e não inerte. / [en] The SO2 is well known as an important environmental contaminant and many countries have established rules to control its emission to the atmosphere and as result most of power supply plants were equipped with flue gas desulfurization systems. Although this technology is successful in the discharge of SO2, its generates a large amount of gypsum FGD (flue gas desulfurization) as a residue. Great efforts are being made to find destinations for this residue. In the present study, the FGD gypsum was evaluated as setting retarder to replace the natural gypsum in the production of Portland cement (CP II E-32). The results of physical-chemistry and morphological characterization of both products, natural and FGD gypsum showed a material of high purity, calcium sulfate dehydrate for natural gypsum, and the presence of bassanite (CaSO4.0,6H2O) and hannebachite (CaSO3.0,5H2O) with low concentrations of impurities for FGD gypsum. Based on the results, the FGD gypsum is a suitable alternative to replace natural gypsum. The setting time with FGD gypsum showed about 1 hour delay compared with natural gypsum and its effect on compressive strength, for samples of 3, 7 e 28 days, depend the composition of the mixtures, reaching the maximum value for the mixture of 1,4 weight percent natural gypsum and 2,1 weight percent FGD gypsum. The FGD gypsum environmental impact was evaluated by determining its potential in releasing inorganic constituents, following the standard ABNT NBR 10004:2004, and it was classified as a non-hazardous and non-inert.
9

Systematic Selection and Application of Backfill in Underground Mines

Masniyom, Manoon 17 April 2009 (has links)
The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash and FGD-gypsum from power plants, natural and synthetic anhydrite. The different material mixtures investigated can be used as a technically and economically viable backfill for underground mines. In summary, the systematic selection of backfill materials from by-products, mine waste and tailings from the mineral processing of mining industry and other industries were suited as a backfill material for test field in China coal fires and recommended for underground potash mines in Thailand.
10

Impacts of Biosolids and FGD Gypsum Application on Marginal Soil Quality and Production of Miscanthus as a Bioenergy Crop

Kilpatrick, Lindsay Anne 19 July 2012 (has links)
No description available.

Page generated in 0.0353 seconds