• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 19
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 128
  • 128
  • 29
  • 29
  • 27
  • 21
  • 16
  • 16
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A microscale study of small crack propagation in multiaxial fatigue

Bennett, Valerie P. January 1999 (has links)
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2000. / David L. McDowell. Part of the SMARTech Electronic Thesis and Dissertation Collection.
92

On the initiation and propagation of fatigue cracks in WC-Co

Erling, Ghita January 1998 (has links)
A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering, Johannesburg, 1998 / This research examines fatigue in WC-Co, both under compressive and tensile loading conditions. A new macro-mechanism for compression fatigue crack propagation is put forward, which contradicts existing data on compression fatigue cracks as being self-limiting. Evidence of this macro-mechanism is presented in the form of final crack length versus number of cycles data, and micrographs of the compression fatigue cracks. A finite element study of the stress distribution in the WC-Co microstructure during compression fatigue loading has been developed. This model verifies possible methods of compression fatigue crack initiation. Examination of tensile fatigue and fast: fracture surfaces is used to show that fatigue is a separate mechanism to fast fracture in WC-Co. Characteristic features of the fatigue fracture surface are presented. A possible fatigue crack propagation mechanism is also presented. Finally, fatigue crack growth rate data in the form of the Paris equation is presented for WC-Co grades T6 and G6. / MT2017
93

Fatigue Lifetime Approximation Based On Quantitative Microstructural Analysis For Air Plasma Sprayed Thermal Barrier Coatings

Bargraser, Carmen 01 January 2011 (has links)
The durability of thermal barrier coatings (TBCs) affects the life of the hot section engine components on which they are applied. Fatigue is the general failure mechanism for such components and is responsible for most unexpected failures; therefore it is desirable to develop lifetime approximation models to ensure reliability and durability. In this study, we first examined the microstructural degradation of air plasma sprayed ZrO2-8wt.%Y2O3 TBCs with a low-pressure plasma sprayed CoNiCrAlY bond coat on an IN 738LC superalloy substrate. The durability of TBCs were assessed through furnace thermal cyclic tests carried out in air at 1100°C with a 1-, 10-, and 50-hour dwell period, preceded by a 10-minute heat-up and followed by a 10-minute forced-air-quench. Failure mechanisms of the TBCs were thoroughly investigated through materials characterization techniques including: X-Ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. Quantitative microstructural analyses were then carried out to document the growth of the thermally grown oxide (TGO) scale, the depletion of the Al-rich β-NiAl phase in the bond coat, and the population and growth of micro-cracks near the YSZ/bond coat interface. Trends in the TGO growth and the β-phase depletion in the bond coat followed those of diffusion-controlled processes—parabolic growth of the TGO and exponential depletion of the β-phase. Formation and propagation of cracks within the YSZ resulted in complete spallation of the YSZ topcoat from the bond-coated superalloy substrate. Evolution in these microstructural features was correlated to the lifetime of TBCs, which showed cracking within the YSZ to be the cause of failure; thus a lifetime iv approximation model was developed, via modification of Paris Law, based on the experimental data. The model predicted the TBC lifetime within 10% of the experimental lifetime.
94

The role of the fiber/matrix interphase in the static and fatigue behavior of polymeric matrix composite laminates

Swain, Robert Edward 12 July 2007 (has links)
Within the past several years, researchers have detected the presence of a third “phase” between the bulk fiber phase and bulk matrix phase in a polymeric matrix composite. This finite-thickness region — termed the interphase — possesses mechanical, physical, and chemical properties that are distinct from the fiber and matrix constituents. Thus, the interphase embodies the characteristics of the fiber/matrix bond, including the strength and stiffness of the bond. In essence, the interphase represents the composite system, since it defines the level of synergistic interaction that occurs between the load-carrying fibers and the binding matrix material. Recent interest in the interphase has spawned international conferences and a technical journal devoted to its study. Despite this spate of research, some very fundamental questions about the interphase have remained unanswered. One such question is: “What is best for the performance of a composite, a strong or weak or intermediate-strength interphase?” It is surprising that this question is even asked, since, until recently, it had been assumed that the stronger the fiber/matrix bond, the better the composite behavior. It is now known that this adage is far from true. Two formidable challenges await those who wish to correlate the strength of the interphase to the mechanical performance of polymeric matrix composite materials. First, one seeks to systematically alter the interphase in order to exploit this variable. In this study, fourteen material systems representing permutations of four carbon fibers, three matrix systems, percentages of fiber surface treatment, and three sizing conditions have been examined. Secondly, one needs to quantitatively characterize the properties of the resultant interphase in order to correlate the bond condition to the composite’s mechanical behavior. This investigation utilizes two techniques, the Continuous Ball Indentation Test and transverse flexure testing, as a means of interrogating the strength of the interphase. The influence of the interphase on the tensile and compressive strength and modulus of crossplied laminates possessing a center hole is investigated. Unnotched angle-ply ([±45]<sub>ns</sub>) laminates are also tested in order to assess the role of the interphase in the strength of a “matrix-dominated” laminate. Fully-reversed (R =-1), axial fatigue of notched cross-plied laminates from each of the fourteen material systems 1s performed. During fatigue testing several data are monitored, including cycles to failure, dynamic modulus, and notch temperature. The tension-tension (R= 0.1) fatigue response of the unnotched angle-ply laminates is also studied. Results from X-ray radiography of fatigue-damaged specimens help to explain the relationship between the interphase and the initiation and propagation of life-critical damage mechanisms. Having observed the formative role played by the interphase in the performance of these laminates, an attempt is made to introduce variables representing the interphase into micromechanical models of composite behavior. / Ph. D.
95

Response and failure analysis of a graphite-epoxy laminate containing terminating internal plies

Kemp, Brian Lee January 1985 (has links)
A change in laminate thickness due to terminating internal plies acts as a stress riser for both intralamina and interlaminar stresses. This laminate configuration is referred to as a ply drop. The linear elastic, three-dimensional stress distributions in the vicinity of a ply drop are determined for a graphite-epoxy laminate subject to axial tension and compression by a finite element analysis. It is shown that the interlaminar stresses have a maximum magnitude at the ply drop-off, and decrease proceeding away from the drop-off. Two modes of failure initiation are analyzed. In the pure resin regions surrounding the dropped plies, the maximum stress criterion is assumed to govern failure. The Tsai-Wu criterion is used for intralamina failure prediction. The influence of two laminate lay-ups and a variety of ply drop geometries on the response and failure are presented. / M.S.
96

Characteristics of thermally-induced transverse cracks in graphite-epoxy composite laminates

Adams, Daniel S. January 1983 (has links)
M.S.
97

On stationary and nonstationary fatigue load modeling using autoregressive moving average (ARMA) models

Leser, Christoph 20 October 2005 (has links)
The concise description of one- and multidimensional stationary and non stationary vehicle loading histories for fatigue analysis using stochastic process theory is presented in this study. The load history is considered to have stationary random and nonstationary mean and variance content. The stationary variations are represented by a class of time series referred to as Autoregressive Moving Average (ARMA) models, while a Fourier series is used to account for the variation of the mean and variance. Due to the use of random phase angles in the Fourier series, an ensemble of mean and variance variations is obtained. The methods of nonparametric statistics are used to determine the success of the modeling of nonstationarity. Justification of the method is obtained through comparison of rainflow cycle distributions and resulting fatigue lives of original and simulated loadings. Due to the relatively small number of Fourier coefficients needed together with the use of ARMA models, a concise description of complex loadings is achieved. The overall frequency content and sequential information of the load history is statistically preserved. An ensemble of load histories can be constructed on-line with minimal computer storage capacity as used in testing equipment. The method can be used in a diversity of fields where a concise representation of random loadings is desired. / Ph. D.
98

Finite Element Modeling and Fatigue Analysis of Composite Turbine Blades under Random Ocean Current and Turbulence

Unknown Date (has links)
Several modifications have been implemented to numerical simulation codes based on blade element momentum theory (BEMT), for application to the design of ocean current turbine (OCT) blades. The modifications were applied in terms of section modulus and include adjustments due to core inclusion, buoyancy, and added mass. Hydrodynamic loads and mode shapes were calculated using the modified BEMT based analysis tools. A 3D model of the blade was developed using SolidWorks. The model was integrated with ANSYS and several loading scenarios, calculated from the modified simulation tools, were applied. A complete stress and failure analysis was then performed. Additionally, the rainflow counting method was used on ocean current velocity data to determine the loading histogram for fatigue analysis. A constant life diagram and cumulative fatigue damage model were used to predict the OCT blade life. Due to a critical area of fatigue failure being found in the blade adhesive joint, a statistical analysis was performed on experimental adhesive joint data. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
99

Fatigue modeling of composite ocean current turbine blade

Unknown Date (has links)
The success of harnessing energy from ocean current will require a reliable structural design of turbine blade that is used for energy extraction. In this study we are particularly focusing on the fatigue life of a 3m length ocean current turbine blade. The blade consists of sandwich construction having polymeric foam as core, and carbon/epoxy as face sheet. Repetitive loads (Fatigue) on the blade have been formulated from the randomness of the ocean current associated with turbulence and also from velocity shear. These varying forces will cause a cyclic variation of bending and shear stresses subjecting to the blade to fatigue. Rainflow Counting algorithm has been used to count the number of cycles within a specific mean and amplitude that will act on the blade from random loading data. Finite Element code ANSYS has been used to develop an S-N diagram with a frequency of 1 Hz and loading ratio 0.1 Number of specific load cycles from Rainflow Counting in conjunction with S-N diagram from ANSYS has been utilized to calculate fatigue damage up to 30 years by Palmgren-Miner's linear hypothesis. / by Mohammad Wasim Akram. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
100

Integrated Micromechanical-Structural Framework for the Nonlinear Viscoelastic Behavior of Laminated and Pultruded Composite Materials and Structures

Muliana, Anastasia Hanifah 31 March 2004 (has links)
This study introduces a new three-dimensional (3D) multi-scale constitutive framework for the nonlinear viscoelastic analysis of laminated and pultruded composites. Two previously developed nonlinear micromechanical models for unidirectional and in-plane random composite layers are modified to include time-dependent and nonlinear behavior. A new recursive-iterative numerical integration method is introduced for the Schapery nonlinear viscoelastic model and is used to model the isotropic matrix subcells in the two micromodels. In addition, a sublaminate model is used to provide for a through-thickness 3D nonlinear equivalent continuum of a layered medium. The fiber medium is considered as transversely isotropic and linear elastic. Incremental micromechanical formulations of the above three micromodels are geared towards the time integration scheme in the matrix phase. New iterative numerical algorithms with predictor-corrector type steps are derived and implemented for each micromodel to satisfy both the constitutive and homogenization equations. Experimental creep tests are performed for off-axis pultruded specimens in order to calibrate and examine the predictions of the constitutive framework for the multi-axial nonlinear viscoelastic response. Experimental creep data, available in the literature, is also used to validate the micromodel formulation for laminated composite materials. Nonlinear viscoelastic effects at the matrix level, such as aging, temperature, and moisture effects can be easily incorporated in the constitutive framework. The multi-scale constitutive framework is implemented in a displacement-based finite element (FE) code for the analysis of laminated and pultruded structures. Several examples are presented to demonstrate the coupled multi-scale material and structural analysis.

Page generated in 0.4452 seconds