• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 19
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 128
  • 128
  • 29
  • 29
  • 27
  • 21
  • 16
  • 16
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Applied Mechanical Tensile Strain Effects on Silicon Bipolar and Silicon-Germanium Heterojunction Bipolar Devices

Nayeem, Mustayeen B. 18 July 2005 (has links)
This work investigates the effects of post-fabrication applied mechanical tensile strain on Silicon (Si) Bipolar Junction Transistor (BJT) and Silicon-Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) devices. Applied strain effects on MOSFET transistors are being heavily explored, both in academia and industry, as a possible alternative to dimensional scaling. This thesis focuses on how strain affects Si BJT and SiGe HBTs, where tensile strain is applied after the Integrated Circuit (IC) fabrication has been completed, using a unique mechanical method. The consequence of both biaxial and uniaxial strain application has been examined in this work. Chapter I gives a short introduction to the scope of this work, the motivation for conducting this research and the contributions of this experiment. Chapter II entails a brief discussion on Si bipolar and SiGe heterojunction bipolar device physics, which are key to the understanding of strain induced effects. Chapter III provides a thorough summary of the current state of research regarding applied strain, also known as Strain Engineering. It covers different types, orientations, and application techniques of strain. Chapter IV, highlights the details of this experiment, and also presents the measured results. It is observed that for this particular method of biaxial tensile strain application, the collector current (IC) and current gain degrades for both Si BJT and SiGe HBT. Base current (IB) decreases in Si BJT, though it increases for SiGe HBT after strain. Little or no change is noticed in the dynamic or ac small-signal characteristics like unity-gain cutoff frequency (fT) and base resistance (rBB) after strain. Uniaxially strained SiGe HBT samples showed similar results as the biaxial strain. This chapter also attempts to explain the origin of these strain induced changes. Chapter V, summarizes the finding of this experiment, and concludes the thesis with some future directions for this research.
102

Fatigue Crack Growth Analysis Models For Functionally Graded Materials

Sabuncuoglu, Baris 01 January 2006 (has links) (PDF)
The objective of this study is to develop crack growth analysis methods for functionally graded materials under mode I cyclic loading by using finite element technique. The study starts with the analysis of test specimens which are given in ASTM standard E399. The material properties of specimens are assumed to be changing along the thickness direction according to a presumed variation function used for the modeling of functionally graded materials. The results of the study reveal the influence of different material variation functions on the crack growth behavior. In the second part, the growth of an elliptical crack which is a common case in engineering applications is analyzed. First, mode I cycling loading is applied perpendicular to the crack plane and crack growth profiles for a certain number of cycles are obtained for homogeneous materials. Then, the code is extended for the analysis functionally graded materials. The material properties are assumed to vary as an exponential function along the major or minor axis direction of the crack. The results can be used to examine the crack profile and material constants&rsquo / influence for a certain number of cyclic loading.
103

Crystal plasticity modeling of Ti-6Al-4V and its application in cyclic and fretting fatigue analysis

Zhang, Ming 10 March 2008 (has links)
Ti-6Al-4V, known for high strength-to-weight ratio and good resistance to corrosion, has been widely used in aerospace, biomedical, and high-performance sports applications. A wide range of physical and mechanical properties of Ti-6Al-4V can be achieved by varying the microstructures via deformation and recrystallization processes. The aim of this thesis is to establish a microstructure-sensitive fatigue analysis approach that can be applied in engineering applications such as fretting fatigue to permit explicit assessment of the influence of microstructure. In this thesis, crystal plasticity constitutive relations are developed to model the cyclic deformation -TiAl has beenabehavior of Ti-6Al-4V. The development of the slip bands within widely reported and has been found to play an important role in deformation and fatigue behaviors of Ti-6Al-4V. The shear enhanced model is used to simulate the formation and evolution of slip bands triggered by planar slip under static or quasi-static loading at room temperature. Fatigue Indicator Parameters (FIPs) are introduced to reflect driving force for the different crack formation mechanisms in Ti-6Al-4V. The cyclic stress-strain behavior and fretting fatigue sensitivity to microstructure and loading parameters in dual phase Ti-6Al-4V are investigated.
104

Thermoelastic stress analysis techniques for mixed mode fracture and stochastic fatigue of composite materials

Wei, Bo-Siou 05 May 2008 (has links)
This study develops new quantitative thermoelastic stress analysis (TSA) techniques for fracture and fatigue damage analysis of composite materials. The first part deals with the thermo-mechanical derivation of two quantitative TSA techniques applied to orthotropic composites with and without a transversely-isotropic surface coating layer. The new TSA test procedures are derived in order to relate the thermal infrared (IR) images with the sum of in-plane strains multiplied by two newly defined material constants that can be experimentally pre-calibrated. Experiments are performed to verify the TSA methods with finite element (FE) numerical results along with available anisotropic elasticity solution. The second part of this study applies the quantitative TSA techniques together with the Lekhnitskii's general anisotropic elasticity solution to calculate mixed-mode stress intensity factors (SIFs) in cracked composite materials. The cracked composite coupons are subjected to off-axis loadings with respect to four different material angles in order to generate mixed-mode SIFs. A least-squares method is used to correlate the sum of in-plane strains from the elasticity solution with the measured TSA test results. The mode-I and mode-II SIFs are determined from eccentrically loaded single-edge-notch tension (ESE(T)) composite specimens. The FE models and virtual crack closure technique (VCCT) are utilized for comparisons. In the third part, a new stochastic model is proposed to generate S-N curves accounting for the variability of the fatigue process. This cumulative damage Markov chain model (MCM) requires a limited number of fatigue tests for calibrating the probability transition matrix (PTM) in the Markov chain model and mean fatigue cycles to failure from experiments. In order to construct the MCM stochastic S-N curve, an iterative procedure is required to predict the mean cycles to failure. Fatigue tests are conducted in this study to demonstrate the MCM method. Twenty-one open-hole S2-glass laminates are fatigue-cycled at two different stress levels. The coupon overall stiffness and surface-ply TSA damage area have been used as two damage metrics. The MCM can satisfactorily describe the overall fatigue damage evolution for a limited number of coupons (less than 6) subjected to a given specific stress level. The stochastic S-N curve can be constructed using at least two sets of fatigue tests under different stress levels. Three available fatigue tests for different E-glass laminates from the literature are also investigated using the proposed MCM approach. The results show the MCM method can provide the stochastic S-N curves for different composite systems and a wide range of fatigue cycles.
105

Fatigue crack initiation in cross-ply carbon fiber laminates

Ketterer, Justin M. 09 July 2009 (has links)
The goal of this research was to investigate the tensile fatigue behavior of a carbon fiber / epoxy composite material. Specifically, the stress levels at which cracks initiated in static and fatigue loading in the 90 degree plies of a "quasi-cross ply layup" [0/905]S was investigated. For layups which contain them, cracks in composite laminates initiate and propagate from 90 degree plies (including the ubiquitous "quasi-isotropic layup" 0/±45/90). Thus, this work provides valuable insight into the fatigue behavior of the plies which originate fatigue damage. Unidirectional off-axis 90 degree and 10 degree specimens were also tested, but the bulk of testing was done on the cross-ply laminates. The project sponsors, Boeing, were in the process of extending a failure model to the case of fatigue. The body of work presented here provided empirical data for that effort. Several different inspection techniques were used to investigate for cracking in the 90 degree plies, including: x-ray images, edge replicates, dye penetrants, and optical microscopy. Plots of the stress level at which crack initiation occurred will be presented, as well as images illustrating damage development in these layups. Comparisons are made to the experimental results of other investigations of this type of layup. Explorations of the effect of R-ratio (including R = 0.1 and 0.5), loading frequency (including 3, 10, and 30 Hz), and surface roughness (hand polished specimen edges to 1500 grit smoothness) on fatigue crack initiation were also performed. For the most damaging case (10 Hz, R = 0.1, no polishing), the crack initiation strain (0.00276) was one half of the strain at which cracks initiated in static monotonic loading (0.0054), and was 16% of the cross-ply specimen's (0 degree fiber dominated) ultimate strain value of (0.018).
106

Développement et caractérisation d’une connexion hybride béton-acier utilisée comme rupteur de pont thermique balcon-plancher en Isolation Thermique par l’Extérieur / Developement and characterization of a steel-concrete hybrid connection used as a theral break system for externally insulated buildings

Le Gac, Benoit 20 September 2018 (has links)
L'objectif principal de cette thèse de doctorat est le développement et la caractérisation d'une connexion hybride balcon-plancher à usage de rupteur d( pont thermique pour bâtiments isolés par l'extérieur. Structurellement, elle doit assurer la transmission d'un moment de flexion important et un effort tranchant liés au porte-à-faux du balcon. Ce système est de la famille des connexions hybrides encore peu décrites dans la littérature scientifique et pou laquelle ces travaux apportent une contribution. Les solutions existantes pour corriger les ponts thermiques de balcon impliquent des contraintes architecturales ou techniques. Les rupteurs de ponts thermiques sont une solution pertinente structurellement et them1iqucment. Les principaux systèmes existants n'exploitent pas de technologie hybride béton-acier à ce jour. Le comportement mécanique du rupteur a d'abord été testé expérimentalement sous chargement vertical statique monotone lors d'une campagne de cinq essais. Les résultats mettent en évidence une réponse moment-rotation très ductile et conforme aux attentes des pré-dimensionnements. Dans le prolongement de l'interprétation expérimentale, un modèle semi-empirique a été développé. Le gain apporté par une disposition spécifique d'ancrage en traction par barres transversales soudées a pu être quantifié en comparaison avec les modèles analytiques existants. Le comportement différé de la connexion, imputable au nuage du béton à l'interface avec les éléments hybrides a fait l'objet d'une étude expérimental, Le lien entre l'évolution de la rotation de la connexion et le coefficient de nuage matériel a été établi. Un modèle numérique calibré sur les essais de chargement vertical a permis d'étudier en détail le fonctionnement de la clé de cisaillement du rupteur. La détermination des conditions aux limites du système a permis de justifier les diagrammes d'efforts sur la clé. Enfin, le dernier volet de ce travail de thèse concerne la justification en fatigue du système sous l'action de la dilatation thermique différentielle entre h balcon et le plancher. /\près une série d'essais en fatigue oligocyclique pour établir un critère de résistance et une étude de la sollicitation thermique, la durabilité du rupteur a pu être démontrée. Le développement du rupteur SUNE peut à ce stade être considéré comme abouti et pem1et d'en valider l'aptitude pour une gamme de produit. L'industrialisation et la commercialisation du produit passera nécessairement par une certification pour laquelle des justifications poussées sont d'ores et déjà établies et seront un gage de pertinence scientifique du système. / The main goal of this Ph.D. thesis is the development and characterization of a hybrid balcony-floor connection used as a thermal break for externally insulated buildings. Structurally, it must ensure the transmission of a significant bending moment and a shear force due to the balcony cantilever. This system belongs to the hybrid connections still poorly described in the scientific literature and for which this thesis makes a contribution. Existing solutions to avoid balcony's thermal bridges involve architectural or technical constraints. Thermal break systems are structurally and thermally relevant solutions. The main existing systems do not involve steel concrete hybrid technology to date. The mechanical behavior of the developped system has firstly been tested under vertical static loading during a campaign of five tests. The results show a very ductile moment-rotation response that meets design expectations. As an extension of the experimental interpretation, a semi-empirical model has been developped. The gain of stiffness obtained by a specific anchoring detail has been quantified in relation to existing analytical models. The creep behavior of the connection, due to the concrete creeping at the interface with the hybrid elements has been the object of an experimental study. The link between the evolution of the connection rotation and the material creep coefficient has been established. A finite element mode! has been calibrated on the vertical loading tests and allowed to study in detail the behaviour of the system's shear key. The determination of the boundary conditions of the system justifies the force diagrams on the key. The last part of this work concerns the justification of the system under the fatigue loading provoked by the differential thermal expansion between the balcony and the floor. A series of tests under oligocyclic fatigue loading was performed to establish a resistance criterion and a study of the actual thermal stress action was completed. Finaly, the durability of the connection has been demonstrated. The development of this hybrid connection can be successfully considered and validates the suitability for a range of products. The industrialization and marketing of the product will go through a certification for which the justifications are already established and will be a guarantee of the scientific relevance of the system.
107

Estudo comparativo entre critérios de fadiga multiaxial aplicados ao contato roda-trilho : A comparative study of multiaxial fatigue criteria applied to the wheel-rail contact / A comparative study of multiaxial fatigue criteria applied to the wheel-rail contact

Fumes, Fabiano Gonzaga, 1986- 24 August 2018 (has links)
Orientador: Auteliano Antunes dos Santos Júnior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-24T19:33:54Z (GMT). No. of bitstreams: 1 Fumes_FabianoGonzaga_M.pdf: 12049048 bytes, checksum: df4dc1dd45d74bbdc31c6a5893edd4fe (MD5) Previous issue date: 2014 / Resumo: Este trabalho apresenta a comparação entre os diversos critérios de fadiga multiaxial de alto ciclo aplicados ao problema de contato roda-trilho. Para isto, é utilizado um modelo elastoplástico tridimensional de elementos finitos capaz de permitir o cálculo tanto das tensões geradas pelo rolamento de uma roda livre de tensões residuais de fabricação como de uma roda que contenha as tensões residuais provenientes do processo de tratamento térmico, obtidas através de uma simulação térmico-estrutural. Estes dois cenários são avaliados segundo critérios de fadiga multiaxial baseados tanto em planos críticos, como Dang Van, Matake e McDiarmid, quanto nos baseados em invariantes do tensor de tensões, como Sines, Crossland e Kakuno Kawada. Pela natureza da fadiga de contato, que não possui condição de vida infinita, é estimado para cada critério um número de ciclos para o aparecimento das trincas. Como resultado, observa-se que para alguns critérios como Dang Van, Sines e Kakuno-Kawada, a vida em fadiga é beneficiada pelo processo de tratamento térmico, enquanto para os demais, as tensões residuais de fabricação provocam uma redução no número de ciclos para o aparecimento das trincas / Abstract: This work presents a comparison of different high cycle multiaxial fatigue criteria, applied to wheel- rail contact. For this, it is used a three-dimensional elastoplastic finite element model able to calculate stresses generated by the rolling of a wheel free of residual stresses from manufacturing process and also by a wheel containing the residual stresses from heat treatment process, generated by a thermal-structural simulation. These two scenarios are evaluated according to multiaxial fatigue criteria based on critical planes, as Dang Van, Matake and McDiarmid, and also based on the invariants of the stress tensor, as Sines, Crossland and Kakuno Kawada. Due to the nature of rolling contact fatigue, which has no condition of infinite life, a number of cycles for crack appearance are estimated for each criterion. It can be notice that for some criteria, such as Dang Van, Sines and Kakuno-Kawada, fatigue life is benefited by the heat treatment process, while for others the residual stresses from manufacturing promote a reduction in the number of cycles / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
108

Propriedades mecânicas e micromecanismos de fratura de corpos-de-prova usinados de rodas ferroviárias fundidas e forjadas / Mechanical properties and fracture micromechanisms of machined specimens from the cast and forged railway wheels

Queiroz, Syme Regina Souza 20 August 2018 (has links)
Orientador: Itamar Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-20T17:14:11Z (GMT). No. of bitstreams: 1 Queiroz_SymeReginaSouza_D.pdf: 5101982 bytes, checksum: 1143c4b43c52ed713ed719367ce07ead (MD5) Previous issue date: 2012 / Resumo: A tendência mundial das estradas de ferro é utilizar carga elevada por vagão no transporte de produtos e alta velocidade no setor de passageiros. Em ambas as situações, as rodas ferroviárias são muito solicitadas mecanicamente e, em função disso, as propriedades mecânicas dessas rodas devem ser rigorosamente controladas, tendo em vista que as principais causas de acidentes envolvendo trincas nas rodas, ou a retirada da roda antes do final de sua vida, estão direta ou indiretamente associadas a baixos níveis de resistência mecânica, resistência à fadiga e tenacidade à fratura. O conhecimento do comportamento mecânico das rodas ferroviárias com base nas suas propriedades mecânicas é imprescindível para o projeto de rodas ferroviárias e para o aprimoramento de seu processo de fabricação. Este trabalho tem como objetivo caracterizar e analisar a microestrutura, as propriedades mecânicas e os micromecanismos de fratura de cinco rodas ferroviárias, duas fundidas e três forjadas, a partir de corpos-de-prova usinados dos aros e discos dessas rodas. As propriedades mecânicas analisadas são as básicas (limite de escoamento, limite de resistência à tração, alongamento específico até à fratura, redução de área, dureza e energia de impacto Charpy), a resistência à fadiga e a tenacidade à fratura, de corpos-de-prova usinados das rodas ferroviárias. Além das microestruturas e das propriedades mecânicas, foram também caracterizados e analisados os micromecanismos de fratura dos corpos-de-prova dos ensaios de fadiga e impacto, por meio de microscopia eletrônica de varredura. Os resultados dos ensaios indicam, em relação aos limites de escoamento e de resistência à tração, que não houve diferenças significativas entre as rodas fundidas e forjadas analisadas. Quanto à dureza (HRC), ductilidade (alongamento específico e redução de área) e tenacidade à fratura, as rodas forjadas apresentaram valores superiores. Em relação à resistência à fadiga, uma propriedade importante no caso de rodas ferroviárias, os corpos-de-prova usinados das rodas forjadas apresentaram melhores resultados em relação às rodas fundidas. Pode-se também concluir que, tanto para as propriedades mecânicas básicas e nobres como também para os micromecanismos de fratura, os resultados obtidos são compatíveis aos encontrados na literatura especializada, validando e comprovando que a metodologia de análise pode ser utilizada para melhorar os projetos e os processos de fabricação de rodas ferroviárias de aço fundidas e forjadas / Abstract: The word wide tendency of railroads is to use high load per wagon in cargo transport and high-speed in passenger sector. In both situations, the railway wheels are very mechanically requered, and as a result, the mechanical properties of these wheels should be controlled strictly in order that the main causes of accidents involving wheels cracks, or withdrawal of the wheel before end of its life, are directly or indirectly associated with low levels of strength, fatigue resistance and fracture toughness. Knowledge of the mechanical behavior of railway wheels based on their mechanical properties is essential for the design of railway wheels and the improvement of its manufacturing process. This work aims to characterize and analyze the microstructure, mechanical properties and fracture micromechanisms of five railway wheels, two cast and three forged, from the machined specimens of the rim and web of these wheels. The analyzed mechanical properties are the basics (yield strength, tensile strength, elongation, reduction in area, hardness and Charpy impact energy) the fatigue resistance and the fracture toughness, from the specimens machined of railway wheels. In addition to the microstructures and mechanical properties were characterized and analyzed the micromechanisms of fracture of the specimens of fatigue and impact tests, using scanning electron microscopy. The test results indicate, with respect to the yield strength and tensile strength, there were no significant differences between cast and forged wheels analyzed. The hardness (HRC), ductility (elongation and reduction in area) and fracture toughness of the forged wheels showed higher values. Regarding resistance to fatigue, an important property in the case of railway wheels, the forged wheels machined specimens shown better results compared to cast wheels. One can also conclude that, for both the basic and noble mechanical properties as well as for the micromechanisms of fracture, the results are compatible with those found in the literature, validating and verifying that the method of analysis can be used to improve the castings and forgings steel railway wheels and manufacturing processes and projects / Doutorado / Materiais e Processos de Fabricação / Doutora em Engenharia Mecânica
109

Thermo-mechanical fatigue crack growth of a polycrystalline superalloy

Adair, Benjamin Scott 23 May 2011 (has links)
A study was done to determine the temperature and load interaction effects on the fatigue crack growth rate of polycrystalline superalloy IN100. Temperature interaction testing was performed by cycling between 316°C and 649°C in blocks of 1, 10 and 100 cycles. Load interaction testing in the form of single overloads was performed at 316°C and 649°C. After compiling a database of constant temperature, constant amplitude FCGR data for IN100, fatigue crack growth predictions assuming no load or temperature interactions were made. Experimental fatigue crack propagation data was then compared and contrasted with these predictions. Through the aid of scanning electron microscopy the fracture mechanisms observed during interaction testing were compared with the mechanisms present during constant temperature, constant amplitude testing. One block alternating temperature interaction testing grew significantly faster than the non-interaction prediction, while ten block alternating temperature interaction testing also grew faster but not to the same extent. One hundred block alternating testing grew slower than non-interaction predictions. It was found that as the number of alternating temperature cycles increased, changes in the gamma prime morphology (and hence deformation mode) caused changes in the environmental interactions thus demonstrating the sensitivity of the environmental interaction on the details of the deformation mode. SEM fractography was used to show that at low alternating cycles, 316°C crack growth was accelerated due to crack tip embrittlement caused by 649°C cycling. At higher alternating cycles the 316°C cycling quickly grew through the embrittled crack tip but then grew slower than expected due to the possible formation of Kear-Wilsdorf locks at 649°C. Overload interaction testing led to full crack retardation at 2.0x overloads for both 316°C and 649°C testing. 1.6x overloading at both temperatures led to retarded crack growth whereas 1.3x overloads at 649°C created accelerated crack growth and at 316°C the crack growth was retarded.
110

Role of end peeling in behavior of reinforced concrete beams with externally bonded reinforcement

Allen, Christine 07 April 2010 (has links)
Aging bridges in the United States demand effective, efficient, and economical strengthening techniques to meet future traffic requirements. One such technique is to bond steel or fiber reinforced polymer (FRP) plates to the tension faces of reinforced concrete bridge beams with adhesives to strengthen them in flexure. However, beams that have been flexurally strengthened in this manner often fail prematurely, in particular by plate end peeling. The benefits of flexural strengthening by externally bonded reinforcement can only be fully realized by preventing premature failure modes so as to allow the development of composite action between the beam and the external reinforcement. With this goal in mind, several critical limit states of externally reinforced beams are examined in this thesis. Models developed by Roberts (1989) and by Colotti, Spadea, and Swamy (2004) that predict premature plate end debonding are examined in depth using data from previously conducted experimental programs that employed both steel and FRP external reinforcement. In addition, various parameters of the concrete beam, adhesive, and external reinforcement are analyzed in each model to determine the role of each parameter in failure prediction. A critical appraisal of the performance of the models using existing experimental data leads to the selection of the Roberts (1989) model. This model is used to develop recommended design guidelines for flexurally strengthening reinforced concrete bridge beams with externally bonded FRP plates and for preventing premature plate peeling.

Page generated in 0.0576 seconds