• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 26
  • 2
  • Tagged with
  • 366
  • 363
  • 359
  • 328
  • 45
  • 44
  • 36
  • 26
  • 24
  • 21
  • 21
  • 20
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Magnetism of manganites, semiconductors and spin glasses

Mathieu, Roland January 2002 (has links)
Magnetic and electrical properties of selected compounds containing manganese (Mn) are investigated by SQUID magnetometry and transport measurements. (Ga,Mn)As is a magnetic semiconductor obtained from GaAs by substituting Ga3+ for Mn2+. Mn acts in the alloy as a magnetic impurity, as well as a hole dopant. A carrier mediated ferromagnetic interaction is observed in (Ga,Mn)As single layers, as well as in (Ga,Mn)As/GaAs superlattices. The magnetic and electrical properties of these structures are controlled by the amount of holes, and thus by the amount of compensating defects such as AsGa antisites. Magnetic inhomogeneity appears for thin layers as well as for layers containing large concentration of Manganese. In non magnetic metallic elements containing a small amount of manganese impurities, a magnetic interaction develops, oscillating in sign with the distance between Mn atoms. Due to random distribution of manganese in a Ag(Mn) alloy, competing ferromagnetic and antiferromagnetic interaction appears, yielding magnetic frustration and the appearance of a spin glass phase at low temperature. These disordered systems show aging, chaos and memory phenomena, which are investigated in the three dimensional Ag(Mn) and Fe0.5Mn0.5TiO3 spin glasses using time dependent magnetization measurements. Perovskite manganites of type (R3+1-xA2+x)MnO3 show colossal magnetoresistive e_ects (CMR). For an optimum doping x, a ferromagnetic order is established, and large changes of their electrical resistance with an applied magnetic field are observed; a magnetoresistance which can be tailored by adding oriented grain boundaries in thin films of these materials. The Manganese appears in the system as Mn3+ and Mn4+, and both ferromagnetic and antiferromagnetic interaction is mediated by the charge carriers along the Mn-O-Mn bonds of the perovskite structure. Depending on the cations forming the manganite, and their relative amount, glassy dynamics may appear, yielding aging and memory features similar to those observed in spin glasses.
42

Charged Particle Transport: As Information Source about Ion Conductors, Dielectric Materials, and Drug Delivery Systems

Frenning, Göran January 2002 (has links)
This thesis treats charged particle transport, mostly in solid materials but also, to some extent, in aqueous media. Three major types of materials have been investigated; dielectric materials, ion conductors, and drug-delivery systems. The frequency-dependent dielectric permittivity of sputtered amorphous thin film tantalum oxide (Ta2O5) has been determined by using impedance spectroscopy. A new interpolation formula has been derived, that interpolates between the two power-law regions at low and high frequencies usually observed in the dielectric spectrum. This formula is based on a regular-singular-point (RSP) analysis of the conduction process, and the power-laws in the dielectric spectrum are interpreted in terms of RSPs of the underlying rate equation for the corresponding polarization-current response function. Lithium transport properties of Ta2O5 have been analyzed by using the galvanostatic intermittent titration technique and by isothermal transient ionic current measurements. Chemical and component diffusion coefficients for intercalated lithium have been extracted. Moreover, the ion conduction process has been analyzed theoretically, and expressions for transient ionic currents derived, both for single ion-conducting layers and for three-layered structures of ion conductors. Electrical measurement techniques have also been applied to pharmaceutical systems. The alternating ionic current technique has been developed as a tool for determining the release of electrically charged drug substances in aqueous media. Tablets made of agglomerated micronized cellulose have been investigated, and sodium chloride has been used as a model drug. An attempt has been made to describe the combined drug dissolution and drug release processes in mathematical terms.
43

Miniature Phase-Transistion Actuators

Klintberg, Lena January 2002 (has links)
Clearly, there is a need for simple, strong actuators capable of large strokes in miniaturized systems such as valves and optical shutters. The basis for this work is the microstructure technology with processing techniques adopted from the integrated circuit industry. In many cases alternative techniques have been developed to obtain features not achievable with conventional silicon technology. Techniques to fabricate thermally activated phase transition actuators capable of large strokes, as well as strong, piezoceramic actuators, have been investigated Multilayered piezoceramic actuators have been fabricated and used in a miniature linear motor. A technique to build freestanding, three-dimensional structures drop by drop using a micromachined ink jet head and a slurry of piezoceramic particles has been developed. Ion track technology was used to create narrow pores in polyimide. To make bimorph-like structures capable of large strokes, these pores were impregnated with paraffin- a material with a large volume expansion associated with its solid-to-liquid phase transition. Paraffin was used in a silicon thermal switch intended for a passive thermal control system, and in a device to be used as a valve in a gas regulation system. Finally, paraffin actuators for integration in thermoplastic microfluidic systems have been developed. During the course of this work not only the importance of identifying the best materials for a given application has been addressed and acknowledged, but also that of finding a processing route on occasion far from the conventional one, and perhaps most important, that of anticipating the often surprising effects following from miniaturization.
44

Piezoactuators for Miniature Robots

Simu, Urban January 2002 (has links)
Challenges in the realisation of a miniature robot are both to handle the complexity of such a system, and to cope with effects of the actual reduction in physical size of all the parts. In particular, the mechanisms for locomotion have to be analysed. The main achievements presented in the thesis are the evaluation and the development of fabrication techniques for miniature multilayer piezoceramic actuators, the evaluation of different motion mechanisms for miniature robots, and the development of building techniques for piezo-based miniature robots. New piezoelectric drive units for miniature robots were designed and fabricated. To realize these monolithic devices, the fabrication technique for multilayer piezoceramic structures was further developed and evaluated with respect to the potential for miniaturisation. Introducing milling in the green state as a technique for shaping piezoceramic actuators gave a geometrical freedom without impairing the possibility of miniaturisation. A rapid prototype process was also developed. In this process, green machining in a milling machine was not only used to shape the multilayer structure, but also to pattern the internal electrodes. The first prototype was a multilayer telescopic actuator, which proved to have a displacement amplification of about 5 compared to a multilayer stack. The drive units were used to evaluate different motion mechanisms. Experiments showed that for a mass corresponding to a typical miniature robot, i.e. 1-10 g, it is possible to use both dynamic and quasistatic motion mechanisms. Artefacts due to vibrations were identified as the main reason for non-ideal behaviour when the movable mass is small. Design criteria for robots with small masses are presented. A tethered cm3 miniature robot for micromanipulation was successfully built. Application specific integrated circuits and two drive units were integrated with a particular building technique. Three-axial positioning and manipulating operations were demonstrated, allowing for a 5-axial movement of a tool.
45

Calcium Aluminate based Cement as Dental Restorative Materials

Kraft, Lars January 2002 (has links)
This thesis presents the results from the development process of a ceramic dental filling material based on calcium aluminate cement. The main focus of the work concerns dimensional changes during setting, hardening and curing and the understanding of the factors controlling the dimensional stability of the system. A range of compositions for research purposes and the composition of Doxadent™ – a dental product launched on the Swedish market in October 2000 – were evaluated. Furthermore hardness characteristics, flexural strength, porosity and microstructure studies are presented. The studies of dimensional changes led to a thorough investigation of the measuring devices used and their relevance. A split pin expander technique, very simple in function, has been evaluated and improved. The technique is considered to be adequate for detecting dimensional stability in restrained samples, thus mimicking the case for real fillings in most tooth cavities. The dimensional changes in the calcium-aluminate based cement system are mainly controlled by the grain size, the exact composition and the compaction degree. The expansion of the calcium-aluminate cement system was in the early work decreased from several percent down to only tenths of a percent. Results show that Doxadent™ has less than 0.2% in linear expansion after 200 days of storage in water. However, long-term tests have been unable to verify whether expansion stops with time. Long-term in-vitro studies of dimensional changes also affect the test equipment used, which is why the long-term behavior of the dimensional stability has to be clinically evaluated. The material integrates excellently with the tooth structure, has hardness and thermal properties similar to those of enamel and dentine, and is also biocompatible during hardening. A patented process for the preparation of wet compacted specimens was also developed.
46

On Tool Failure in Die Casting

Persson, Anders January 2003 (has links)
Die casting is a very cost-efficient method of forming thin-walled and complex near net-shaped products with close geometric tolerances and good surface finish. A permanent die tool is used to make large quantities of identical products. The performance and tool life are limited by several mechanisms, e.g. thermal fatigue cracking, erosion, and corrosion. To develop new and more resistant tool materials for die casting detailed knowledge of the actual casting conditions and the tool failure mechanisms are essential. This thesis contributes to an increased knowledge of tool failure in die casting by investigating and simulating actual casting conditions and tool failure mechanisms. A method to record the temperature fluctuations in a cavity insert during actual brass die casting was developed, and details of the temperature conditions were obtained. Also, a test method based on cyclic induction heating and internal cooling of hollow cylindrical test rods was developed, where the surface strain during thermal cycling could be measured. This method reproduced the characteristic type of surface cracking observed on die casting tools, and proved to give information of the strains and stresses behind the fatigue failure. In actual die casting, the dominant tool failure mechanism is thermal fatigue cracking. The formation of the cracks is associated to accumulation of the local plastic strain that occurs during each casting cycle. Initial crack growth is facilitated by oxidation of the crack surfaces, and proceeded growth is facilitated by this oxidation in combination with crack filling of cast material, and by softening of the tool material. In addition, local enrichment of Pb at the crack front from the cast alloy melt was also observed to promote the crack growth in die casting of brass. In an investigation of thermal fatigue of two hot work tool steels, quenched and tempered to different conditions, it was found that low-cycle fatigue occurs, although the estimated tensile stress never exceed the initial yield strength of the steel. The reason is a gradual softening of the steel during the thermal cycling, and the presence of stress raising defects. The resistance against thermal cracking improves with initial tool steel hardness, because any initial ranking in hardness among the steels is unaffected by the thermal cycling. Another investigation on a selection of surface engineered tool steels, including common diffusion treatments, PVD coatings and combinations of these, showed that surface engineering generally reduce the resistance against thermal cracking as compared to untreated references, since the engineering processes influence negatively on the mechanical properties of the hot work tool steels. Finally, corrosion tests of CrN PVD-coated tool steels by exposing them to molten aluminium revealed the mechanisms of initiation and progress of liquid metal corrosion of this material combination, and that the corrosion resistance improves with the CrN coating thickness.
47

Deformation and Softening behaviour of commercial AlMn-alloys : Experiments and Modelling

Sjølstad, Knut January 2003 (has links)
A comprehensive study of the softening behaviour of two different non-heat treatable AlMn-alloys has been carried out. These alloys were a laboratory processed and an industrially processed AA3103-alloy. The primary objective of the laboratory processed alloy has been directed towards the relationship between the amount of manganese in supersaturated solid solution and the material behaviour during deformation and annealing. The focus for the industrially processed alloy was a detailed material characterisation during hot and cold rolling as well as to follow the softening behaviour of the alloy. The cold rolled microstructures were characterised with respect to subgrain size, misorientation across the subgrain boundaries, particle break-up and global texture. As far as it concerns the cold deformed microstructure it was found that the different homogenisation treatments, resulting in different amount of Mn in supersaturation, had little effect on the deformed microstructure. Detailed experimental work on the softening behaviour after cold deformation and the interaction between recrystallisation and precipitation, i.e. concurrent precipitation, has been carried out. Hardness and yield stress measurements, which defines the strength of the material, revealed that the softening behaviour was significantly slowed down in case of concurrent precipitation. It was further found that the precipitation reaction in this case occurred on the subgrain boundaries. Thus the precipitates considerably retarded the recrystallisation reaction as compared to the case when no precipitation occurred. TTT-diagrams have been constructed on the basis of hardness and conductivity measurements. From these diagrams a characteristic temperature, Tc , for the different material conditions are identified. It was found that as the annealing was carried above this temperature the microstructure consisted of a fine grained equiaxed microstructure. Below Tc the grains become elongated in the rolling direction and the average grain size became much coarser. With respect to recrystallisation texture, a very strong P-texture and in addition some ND-rotated cube texture was found in case of concurrent precipitation. This viistrong P-texture was investigated in detail, and it can be concluded that particle stimulated nucleation of recrystallisation (PSN) plays a significant role in the nucleation of these components. It was found that these texture components had a growth advantage in the early stage of annealing and that they are most probably a result of microgrowth selection, which often are related to a nucleation effect. When precipitation did not interact with recovery and recrystallisation the recrystallisation texture was either random or consisted of a weak cube texture. The softening behaviour of the different materials has been modelled by a physically based softening model, which involves both the recovery and recrystallisation reactions. Both for the AlMn-alloys and for an additional commercially pure Al-alloy, relatively good model predictions were obtained for the softening behaviour when recrystallisation occurred prior to precipitation. However, when the softening reactions were retarded by heavy precipitation of dispersoids the model, in its original form, was not capable to predict the softening behaviour. In this case an additional retarding drag, which reduces the total number of viable recrystallisation nuclei, was added. With the addition of this drag relatively good model predictions were also obtained in case of concurrent precipitation. However, the model was not capable to predict the softening behaviour of the industrially processed AlMn-alloy particularly well.
48

Piezoactuators for Microfluidics : Towards Dynamic Arraying

Lilliehorn, Tobias January 2003 (has links)
Microfluidics can be used to increase performance, reduce reagent consumption and increase throughput in chemical analysis. With the forthcoming development of more advanced microfluidic systems, the integration of actuating elements becomes essential, giving the ability to control and manipulate fluid flow as well as sample or other components. This thesis addresses miniaturisation of piezoceramic actuators, in particular important technological issues when actuators are integrated in microfluidic systems. Thick film multilayer fabrication technology for piezo­ceramics has been further developed, e.g. by introducing techniques for integration of microfabricated channel structures and via interconnects in multilayer components. New building techniques have been incorporated to allow miniaturisation of devices. A rapid prototyping technique for advanced multilayer actuators based on mechanical machining has also been developed and used in subsequent work. When interfacing the macro and the micro world in miniaturised chemical analysis systems, non-contact sample dispensing methods such as ink-jet technology are needed. Thus a piezoactuated flow-through microdispenser, suitable for high-speed on-line chemical sample handling has been investigated. A new miniaturised actuator has been developed and integrated in the microdispenser, simplifying assembly and demonstrating an improved performance of the device. With the prospect of performing automated and highly parallel analysis in reusable microarray devices, a new concept for dynamic arraying is presented. Non-contact trapping of particle or bead clusters in a microfluidic system is demonstrated utilising acoustic radiation forces in standing ultrasonic waves. The integration of piezoceramic micro­transducers has been shown to render possible localised and spatially controlled trapping of individually addressable particle clusters in micro­fluidics. The importance of the acoustic near field in miniaturised devices has been identified and utilised to give strong trapping forces. By making use of disposable chemically activated microbead arrays within a flow-through device, a flexible system is emerging with e.g. applications in proteomics.
49

High Pressure Die Casting of Aluminium and Magnesium Alloys : Grain Structure and Segregation Characteristics

Laukli, Hans Ivar January 2004 (has links)
Cold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings. The investigations were carried out mainly using the AM60 magnesium alloy and the A356 aluminium alloy. Two different casting arrangements were used: the cold chamber HPDC and the gravity die casting methods, which allowed for different flow and solidification conditions. The microstructures in the castings were investigated using optical microscopy, image analysis, scanning electron microscopy, electron back scatter diffraction measurements and electron probe microanalysis. In the HPDC experiments, the shot sleeve solidification conditions were investigated primarily by changing the melt superheat on pouring. This significantly affected the microstructures in the castings. The fraction of externally solidified crystals (ESCs) was consistently found to be largest near the gate in both the AM60 and the A356 die castings. This was attributed to the inherent shot sleeve solidification conditions and the flow set up by the plunger movement. When the superheat was increased, a lower fraction of ESCs was found in the castings. Furthermore, a high superheat gave ESCs with branched dendritic/elongated trunk morphology whilst a low superheat generated coarser and more globular ESCs, both in the AM60 and the A356 castings. The ESCs typically segregated towards the central region of the cross sections at further distances from the gate in the die castings. When a thin layer of thermal insulating coating was applied on the shot sleeve wall in the production of AM60 die castings, it nearly removed all ESCs in the castings. Using an A356 alloy, (and no shot sleeve coating), with no Ti in solution gave a significantly lower fraction of ESCs, whereas AlTi5B1 grain refiner additions induced an increase in the fraction of ESCs and a significantly finer grain size in the castings. The formation of globular ESCs was enhanced when AlTi5B1 grain refiner was added to the A356 alloy. In controlled laboratory gravity die casting experiments, typical HPDC microstructures were created by pouring semi-solid metal into a steel die: The ESCs were found to segregate/migrate to the central region during flow, until a maximum packing, (fraction of ESCs of ~35-40%), was reached. The extent of segregation is determined by the fraction of ESCs, and the die temperature affects the position of the ESCs. The segregation of ESCs was explained to occur during flow as a result of lift forces. The formation of banded defects has also been studied: the position of the bands was affected by the die temperature and the fraction of ESCs. Based on the nature of the bands and their occurrence, a new theory on the formation of defect bands was proposed: During flow the solid distribution from the die wall consists of three regions: 1) a solid fraction gradient at the wall; 2) a low solid fraction region which carries (3) a network of ESCs. A critical fraction solid exists where the deformation rate exceeds the interdendritic flow rate. When the induced stress exceeds the network strength, deformation can occur by slip, followed by liquid flow. The liquid flow is caused by solidification shrinkage, hydrostatic pressure on the interior ESC network, and gaps forming which draw in liquid.
50

Synthesis and Evaluation of TaC:C Low-Friction Coatings

Nilsson, Daniel January 2004 (has links)
In the large family of carbon-based coatings there are members capable of providing a rare and very desirable combination of high wear resistance and low friction. The field of application for this kind of coatings is steadily increasing which, naturally, give raise to new questions and demands. Coatings of this type can be produced in a number of different ways, but the parameter influencing their properties most is the chemical composition. To facilitate investigations of the compositional impact on the synthesis and properties of coatings, a way to alloy magnetron-sputtered thin films was developed in this thesis. It does not involve the use of reactive gases or additional material sources; instead metallic foils are attached onto the magnetron target surface and thus sputtered alongside the target material. This co-sputtering route was later used to synthesize carbon coatings alloyed with Ta, Zr, W and Al in various amounts and configurations. It was shown that the co-sputtering method could be used to alloy coatings in a very simple and straightforward manner, with excellent possibilities of controlling the amount of alloying elements. The process temperature could be kept as low as 70 °C. Carbon coatings alloyed with transition metals (MeC:C) displayed polycrystalline nanocomposite structures with 5 nm metal carbide crystallites in a matrix of near-amorphous carbon. Alloying with Ta resulted in a radical 80 % reduction in friction coefficient during dry sliding in air, from 0.22 for pure carbon to 0.04 for TaC:C. This was found to be due to facilitated graphitization and the formation of lubricating surface oxides. Al additions to TaC:C resulted in a transformation of the TaC phase to a metastable, previously unreported Ta1-χAlχC. The coefficient of friction remained unaltered, but the oxidation rate compared to TaC:C was significantly reduced due to the formation of AlTaO4 instead of Ta2O5.

Page generated in 0.1722 seconds