• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 26
  • 2
  • Tagged with
  • 366
  • 363
  • 359
  • 328
  • 45
  • 44
  • 36
  • 26
  • 24
  • 21
  • 21
  • 20
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Determination of Oxygen Transport Coefficients in Perovskites and Perovskite related Materials with mixed Conductivity

Watterud, Geir January 2005 (has links)
Perovskites and perovskite related materials are materials that are candidates for applications such as oxygen permeable membranes, cathodes for SOFC and high-temperature oxygen sensors. This arises from the potential high ionic conductivity and the chemical stability even at low partial pressures of oxygen. From an application point of view, it is important to have knowledge about the oxygen transport properties in these materials. Oxygen transport in mixed conducting oxides involves two inherently different processes; oxygen exchange between bulk gas and surface and solid state diffusion. The objective of this work has been to obtain fundamental understanding of these transport properties in mixed ionic and electronic conductors. For that purpose two materials systems with significant differences in electronic conductivty and oxygen vacancy concentration were chosen as objectives for the investigation, viz.: Sr-substituted LaCoO3 and Al-substituted SrTiO3. All transport properties (diffusion and surface exchange) have been assessed by electrical conductivity relaxation, and the work also evaluate the pros and cons using this specific method to obtain transport data for the materials in question. In the first two papers (Paper 1 and Paper 2) transport properties are derived for La1-xSrxCoO3-δ (x=0 (LC), 0.2 (LSC-02) and 0.5 (LSC-05)). In Paper 1 “chemical transport coefficients”, Dchem and kchem, are reported. More fundamental transport coefficients, such as oxygen component diffusion coefficient (DO) and vacancy diffusion coefficients (DV), are also deduced and discussed. Activation energies for DO and DV, were determined. The activation energies for DO varies from 279 kJ/mol for LC to 174-222 kJ/mol for LSC-02 and 90-105 kJ/mol for LSC-05, decreasing with increasing Srcontent. The activation energies for the vacancy diffusion coefficient, DV, are smaller than for the component diffusion coefficients and typical values are 77 kJ/mol for LC, 85 kJ/mol for LSC-02 and 75 kJ/mol for LSC-05, that is, almost independent of Sr-content. The enthalpies of vacancy formation decreases with increasing Sr content. The values are 206 kJ/mol for LC, 75 kJ/mol for LSC-02 and 15 kJ/mol for LSC-05, which agrees well with values reported in the literature. However, the vacancy diffusion coefficient showed an unexpected increase at high concentrations of oxygen vacancies, corresponding to δ=0.27-0.30. The phenomena with a PO2 dependent DV is discussed. In Paper 2, the oxygen surface exchange coefficient, k0, is derived from “chemical values” reported in Paper 1, and used as a basis to deduce probable reaction mechanisms associated with surface exchange. The temperature dependency plots showed that for the composition with x = 0.5, the k0 made a shift in activation energy from ~120 kJ/mol to ~15 kJ/mol above 950 °C. It is suggested that this significant shift in activation energy might be due to an oxygen adsorption/desorption mechanism on the surface becoming rate controlling at high temperatures. The composition with x=0.2 did not show this shift in activation energy. Relations between possible rate controlling reactions and reaction rates (k0) were established, and formed the basis for discussions on probable rate controlling processes. There are reasons to assume that for oxidation prosesses a rate controlling reaction involving a direct “installation” of an oxygen molecule into two vacancies is dominating, while a dissociation of an oxygen molecule generally gives a better description for a reduction process. In Paper 3 the oxygen transport properties in SrTi1-xAlxO3 (x=0 (ST), 0.02 (STA-02) and 0.05 (STA-05)) were determined in O2/N2 mixtures. In this contribution the electrical conductivity is also presented in a large PO2- interval (O2/N2- and CO/CO2-mixtures). Electrical conductivity for pure SrTiO3 (ST) in terms of PO2 applied well with defect chemistry reported in the literature. For the two Al-substituted compositions the electrical conductivity followed predicted behaviour at high and low PO2’s. However, in the medium PO2 range we were not able to describe the conductivity behaviour in terms of classical defect chemistry. Reasons for the discrepancy is discussed. Dchem for ST and STA-02 are reported and are, along with their corresponding activation energies, 187 and 104-180 kJ/mol, respectively, in good accordance with values from literature. Furthermore, values for the component diffusion coefficient, DO, and the vacancy diffusion coefficient, DV, are reported for ST at 950 °C, the only composition where oxygen vacancy concentrations are available in the literature. Values for kchem in STA-02 and STA-05 are also reported, and show pronounced PO2 dependencies. For STA-05 the activation energy for kchem is found to vary between 90 and 105 kJ/mol. Due to a high uncertainty, activation energies are not reported for STA-02. Reported Dchem and kchem values for related materials in literature indicate increasing numeric values with decreasing concentration of oxygen vacancies. It is reasoned that this is due to an ever increasing thermodynamic factor with decreasing population of vacancies. The implications for the component diffusion coefficient is discussed. In Paper 4 the oxygen transport properties in SrTiO3 pure and with Al were investigated in mixtures of CO/CO2. Dchem are reported for ST and STA-02 while kchem are reported for ST, STA-02 and STA-05. The Dchem showed a PO2-dependency, which can be explained by the variation in the thermodynamic factor. The introduction of Al in the sample increases the value of Dchem, probably due to the introduction of more oxygen vacancies. STA-02 showed a discrete increase in Dchem in the CO-rich atmospheres, this may be due to phase transition or phase separation at PO2 ~10-17 atm. The kchem showed a maximum at PCO/PCO2 = 1 for STA-02 and STA-05. This behaviour corresponds well with a rate controlling reaction involving a charged and adsorbed CO2 molecule. The same maximum is also reported in the literature for BaTiO3 wihtout and with 1.8 % Al and for La0.9Sr0.1FeO3. This work has examined chemical diffusion and surface exchange coefficients with electrical conductivity relaxation in two material systems with distinct differences in electrical conductivity and oxygen vacancy concentrations. The main focus has been to elucidate properties of the transport coefficients based on own measurements, but also include transport coefficients from other material systems from literature as references. The vacancy diffusion coefficients have been examined, showing that they increase with increasing concentration of oxygen vacancies in materials where the concentration of vacancies is high. No obvious reason for this behaviour has been found, however, it may be related to a change in activation energy. It is rather well established in the literature that for materials where the concentration of vacancies may be characterized as dilute, we should expect a DV independent of the population of vacancies. Finally, based on own results and data reported in the literature it appears that with respect to the oxygen surface flux the oxygen vacancy concentration seems to be the property of most importance. That is, for oxidation processes the oxygen exchange flux will increase with vacancy population.
72

Water-Induced Charge Transport in Microcrystalline Cellulose / Vatteninducerad laddningstransport i mikrokristallin cellulosa

Nilsson, Martin January 2006 (has links)
Microcrystalline cellulose (MCC) is the most frequently used excipient for direct compaction of tablets within the pharmaceutical industry. It has earlier been indicated that the interactions between the hydration shell – surrounding the drug molecules in an MCC tablet – and the cellulose regulate the speed of the drug release process. These interactions, and the charge transport governed by moisture, are therefore important to analyze and understand to be able to tailor make new functional drug delivery systems. In this thesis the physical parameters affecting the water-induced ionic transport have been studied with impedance spectroscopy, transient current measurements, nitrogen adsorption and scanning electron microscopy. Dielectric relaxation processes, pertaining to other processes, have also been assessed and analysed, and a generalized regular singular point model has been shown to be able to describe all features of the dielectric spectrum. It has been shown that the ionic charge transport mechanism in humid MCC most likely is governed by two parallel processes: One involving water constituent ions diffusing between adjacent lowest energy sites (free OH- groups) in disordered regions of the cellulose and the other caused by impurity ions, such as Na+, and protons or H3O+ ions, jumping between neighboring cellulose OH- groups to which primary water molecules are attached. At relative humidities of ~ 37 % (representing monolayer coverage) and higher, the latter process is totally dominating the charge transport. At a given moisture content, there are two parameters determining the magnitude of the water-induced ionic conductivity in MCC: The connectedness of the interparticulate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. The presented findings emphasize the importance of analysing and being able to control the nanostructure of a pharmaceutical cellulose-based system in order to tailor the drug transport properties. The presented results should also be significant for other areas where cellulose-water interactions are of key issue; such as for paper and sanitary product research and for food industries using cellulose-based gels.
73

Porphyrins based detection of NH3 and CO, using field effect grid gate devices

Sánchez Reátegui, Rafael January 2010 (has links)
Porphyrins consist of twenty-atom rings containing four nitrogen atoms and can be used as sensor to detect odours and gases. This thesis investigates whether or not porphyrins can be used as functional materials on grid gate devices.  Drops of PVC embedded porphyrins were deposited on the surface of a grid gate which is a Metal Oxide Semiconductor (MOS) capacitor. In order to detect the gas sensing properties of the porphyrins a light addressable method called Scanning Light Pulse Technique (SLPT) has been used. Drops of porphyrins were deposited with a stretched capillary tube (1 mm diameter). The MOS capacitor has been exposed to nitrogen atmosphere as reference environment, while the target gases were carbon monoxide (100 ppm) and ammonia (500 ppm). The result from the eight porphyrins is that one of them [Pt(II) TPP] has a response for both gases, ammonia induces a change in both the work function and surface resistance, while the carbon monoxide induces only a change in the surface resistance.
74

Relativenobility of precipitated phases in stainless steels : Evaluation with a combination of local probing techniques

Sathirachinda, Namurata January 2010 (has links)
Stainless steels often exhibit complex transformation and precipitation behaviour due to a high content of alloying elements. Secondary phases can be formed in the temperature range of 300-1000°C and are generally undesirable due to their detrimental effect on mechanical properties and corrosion resistance of stainless steels. Of all precipitate types, sigma phase is the major concern due to its effect on both toughness and resistance to corrosion. However, the effect of the phase itself cannot be separated from that of associated changes in the surrounding matrix if macroscopic techniques are used. The situation is similar for investigations of chromium nitrides, which are the precipitated phases frequently observed in high nitrogen stainless steels. High resolution techniques are required to characterize such small individual precipitates to be able to examine their actual effect on the corrosion resistance of stainless steels.   In this work, magnetic force microscopy (MFM) and scanning Kelvin probe force microscopy (SKPFM) were used to investigate the magnetic properties and the Volta potential difference of precipitated phases. The magnetic domain distribution was used to distinguish between ferrite (ferromagnetic), austenite (paramagnetic), and sigma phase (non-magnetic). The Volta potential differences reflect the relative nobility of the phases and thus their tendency to corrode. The MFM and SKPFM techniques are shown to achieve a high lateral resolution of at least 100 nm. This means that small particles or precipitated phases can be characterized separately from the surrounding matrix.   Two grades of duplex stainless steels, the standard 2205 and the super duplex 2507, and an electroslag strip weld with a multi-phase microstructure were investigated using a combination of local probing techniques. The duplex stainless steels underwent various heat treatments to precipitate a sufficient amount of secondary phases. Scanning electron microscopy in backscattered electron mode and energy dispersive X-ray spectroscopy yielded information on the phase distribution and chemical composition of individual phases. Detailed marking of the surfaces was used so that exactly the same areas could be investigated with the MFM and SKPFM techniques. Transmission electron microscopy (TEM) was also employed to characterize the chemical composition of depleted phase boundaries.     The general observation is that, austenite exhibited a higher Volta potential compared with ferrite, most likely due to a higher nickel content in the austenite phase. When sigma phase was present, it showed an intermediate Volta potential between the austenite and ferrite phases. This indicates that austenite is, in general, more noble than sigma phase, and that ferrite is the most active phase. However, austenite showed a lower Volta potential than sigma phase when a long-term isothermal heat treatment at 800°C was used. This is attributed to the depletion of alloying elements in the austenite phase as a result of the formation of chromium nitrides and sigma phase. Synergistic interactions between chromium, molybdenum, and nitrogen may contribute to the effect on the Volta potential, since such small changes of these elements result in reversed Volta potentials of the austenite and sigma phase.   Results from SKPFM and TEM analyses are in concordance and indicate local drops in Volta potential at the phase boundaries due to the depletion of alloying elements caused by sigma phase formation. Immersion tests in acidic mixtures also confirmed that these depleted regions are more susceptible to selective corrosion.   Precipitated chromium nitrides showed a higher Volta potential compared with the other phases. This indicates that any deterioration in the corrosion resistance is unlikely caused by the nitride particles themselves, but rather by the alloying element depleted regions surrounding the nitride particles. The size of nitride particles affected the measured Volta potential, and the measured Volta potentials of small particles are tended to be concealed by the surrounding matrix. When the size of nitride particles is below the resolution limit of the SKPFM technique, the Volta potential differences of these particles relative to the matrix could not be detected.   Volta potential measured in air with the SKPFM technique correlated better to the tendency to active dissolution than to pitting corrosion in acidic mixtures. The magnetic force showed a certain influence on the electrostatic force, thus Volta potential measurements are recommended to be performed with a non-magnetic tip. Although many factors may affect the measured Volta potential, the SKFPM technique combined with other local probing techniques is a promising approach to evaluate corrosion tendency of precipitated phases in multi-phase alloys. With optimal conditions, the detectable size was down to approximately 100 nm. / QC 20100518
75

Novel Syntheses, Structures and Functions of Mesoporous Silica Materials

Atluri, Rambabu January 2010 (has links)
The field of mesoporous silica has been studied for about 20 years but it is still an area attracting a lot of attention. The use of novel templating molecules and several issues related to the synthesis and fine structural details are still poorly understood. These aspects are of special relevance to the theme of this thesis, which includes novel work on three fronts; the synthesis, characterization and applications of mesoporous materials. The work described in this thesis aims to contribute to the mesoporous field by developing novel methods of mesoporous silica synthesis without relying on surfactant micelles as the templating agent but focusing instead on the stacking arrangement of aromatic molecules such as folic acid. The novel route presented here leads to 2D hexagonal structures with p6mm symmetry possessing high mesoporosity and large surface areas. The versatility of this route at various synthesis temperatures and using hydrothermal treatments has also been investigated. A novel strategy is also proposed for the synthesis of mesocaged materials with Pm3n symmetry structures. The mechanism relies on the penetration of the neutral propylamino moiety of a co-structure directing agent into the hydrophobic core of the surfactant micelles. Beside these novel pathways, the effect of hydrothermal treatment (HT) at 100 oC on the 3D cubic Ia3d structure (AMS-6) over a long period of time was also examined, and the results show a phase transformation from a 3D cubic Ia3d to a 2D hexagonal p6mm structure and a return to the 3D cubic Ia3d structure at a later stage in the synthesis. This unexpected result is discussed. In this work, the detailed structural characterization of mesoporous materials using electron microscopy techniques is an important task. In particular, to extend previous knowledge, the fine structural details of mesocaged materials possessing Pm3n symmetry prepared with various amphiphilic surfactants under acidic and alkaline conditions has been investigated using electron crystallography and sorption studies. The results show subtle fine structural differences with materials prepared under alkaline conditions exhibiting the largest mesocage sizes. The cage and window sizes are primarily determined by the charge density of the surfactant and the thickness of the hydration layer surrounding the surfactant micelles. The relationship between the mesoporous structure and its function has been investigated by evaluating the rate of release of amphiphilic molecules, used as model molecules, from the internal pore structures of mesoporous materials with different pore geometries. In a similar study, the rate of proton diffusion from a liquid surrounding the mesoporous nanoparticles into the pore system of AMS-n was also assessed. The results show that the diffusion coefficients for the proton absorption process are higher than those for the release of the surfactant template molecules, with more complex 3D mesocaged particles showing the highest diffusion coefficients in both cases. Finally, the quantity of CO2 adsorption was measured by modifying the internal surfaces of mesocaged material with n-propylamino groups. Results show that the cage-connecting window sizes limit the surface coverage of n-propylamino groups by pore blocking and affect the volume of CO2 adsorption. In addition, at the molecular level, CO2 adsorption shows physisorption or chemisorption depending on the localized distribution of n-propylamino groups, as studied by in-situ infrared spectroscopy.
76

On the analysis of cast structure and its changes during hot working of forging ingots

Sarnet, Jan January 2009 (has links)
Forging ingots are hot worked to consolidate structural imperfections and refine the microstructure. Possible imperfections are segregations, porosities, cracks, and inclusions. In this thesis, techniques and methods for the characterisation of behaviour and properties of ingots and forgings. The root causes for quality issues in open-die forgings are shown to be numerous. Ingot structure in cast tool steel was analyzed, and the main imperfections were centre macrosegregation, and mid radius A-segregations.For overheated steel forgings and low reductions after reheating, a high ultrasonic attenuation and low Charpy-V toughness was found. It could be related to the coarse grain structure found. Only a high forging reduction after reheating will break down the coarse structure. Shorter reheating times and lower forging temperatures gave higher toughness and lower ultrasonic attenuation. Some reduction in toughness was also found from the inclusion field from the bottom of the ingot. Accurate attenuation measurements require a lathe turned surface, complicating in-between-measurements in heat treatment sequences. But on carefully surface prepared forgings, attenuation measurement can be used to determine the success of grain refinement in the heat treatment. A new method for ultrasonic macrography of cast ingot samples is presented. In addition, a new method for hot compression testing of cylindrical metal samples is presented. / QC 20100809
77

Growth of GaN on lattice matched AlInN substrates

Boota, Muhammad, Rahmatalla, Reem January 2008 (has links)
<p>This project was planed in order to study the effect of growth and crystalline quality of GaN on lattice matched Al1-xInxN seed layer. The GaN lattice matched Al0.81Ino.19N seed layer was grown by co-sputtering of Al and In target using only N2 as a sputtering gas in a direct current (DC) reactive magnetron sputter deposition chamber under UHV conditions at low temperature (230 oC) on different substrates. The Indium composition was calculated using vegards law from lattice parameters determined by XRD. The Indium composition was determined by Rutherford Backscattering Spectroscopy (RBS) as well. X-rays diffraction (XRD) showed high crystalline quality wurtzite hexagonal Al1-xInxN seed layers grown at this temperature. The GaN was grown on top of Al0.81Ino.19N seed layer by halide vapour phase epitaxy (HVPE) using a mixture of N2 and H2 and only N2 as a carrier gas in order to study the effect of carrier gas on crystalline quality of GaN. The GaN films were characterised by high resolution X-rays diffraction (HRXRD), scanning electron microscopy (SEM), cathode luminescence (CL) and high resolution transmission electron microscopy (HRTEM) in order to study stress, strain, crystalline quality, surface morphology and optoelectronic properties in relation with the defect density and the microstructure of grown GaN films.</p>
78

Growth of GaN on lattice matched AlInN substrates

Boota, Muhammad, Rahmatalla, Reem January 2008 (has links)
This project was planed in order to study the effect of growth and crystalline quality of GaN on lattice matched Al1-xInxN seed layer. The GaN lattice matched Al0.81Ino.19N seed layer was grown by co-sputtering of Al and In target using only N2 as a sputtering gas in a direct current (DC) reactive magnetron sputter deposition chamber under UHV conditions at low temperature (230 oC) on different substrates. The Indium composition was calculated using vegards law from lattice parameters determined by XRD. The Indium composition was determined by Rutherford Backscattering Spectroscopy (RBS) as well. X-rays diffraction (XRD) showed high crystalline quality wurtzite hexagonal Al1-xInxN seed layers grown at this temperature. The GaN was grown on top of Al0.81Ino.19N seed layer by halide vapour phase epitaxy (HVPE) using a mixture of N2 and H2 and only N2 as a carrier gas in order to study the effect of carrier gas on crystalline quality of GaN. The GaN films were characterised by high resolution X-rays diffraction (HRXRD), scanning electron microscopy (SEM), cathode luminescence (CL) and high resolution transmission electron microscopy (HRTEM) in order to study stress, strain, crystalline quality, surface morphology and optoelectronic properties in relation with the defect density and the microstructure of grown GaN films.
79

Simulation of Phase Transformations and coarsening : Computational tools for alloy development

Jeppsson, Johan January 2011 (has links)
The final properties of an alloy are highly interlaced with its microstructure. It is therefore essential to control the evolution of the microstructure of the material during the fabrication process. Nowadays, materials design involves an increasing part of computational design to complement the traditional experimental trial and error approach. Such simulations of the process can decrease the number of material prototypes and shorten the development time for new alloys. In this thesis several microstructure models, aimed for process design, have been suggested. The ambition has been to develop physically based models that are capable to represent the evolution of hundreds of grain or particle sizes, where the models should be possible to run on a standard computer with simulation times less than one day. To achieve this goal, simplified approaches have been suggested, which are accurate enough for the growth rate of grains and particles. The microstructure models have all in common that size distributions of grains or particles are simulated with mean-field approaches. Several of the models also utilize composition and temperature dependent thermodynamic and kinetic properties continually throughout the simulations. These properties have been calculated with programming interfaces to Thermo-Calc and DICTRA together with appropriate thermodynamic and kinetic databases. The materials that have been considered in the present thesis are low alloyed steels, aluminium alloys and cemented carbides. The models are however generic in the sense that all materials can be handled if appropriate thermodynamic, kinetic and property databases exist for the alloy. / QC 20110316
80

Volume Change Effects during Solidification of Alloys

Korojy, Bahman January 2009 (has links)
Volume change during solidification is an important concept in achieving of casting soundness. The solidification shrinkage can cause different defects in the ingot casting as well as the shape casting. The volume change due to phase transformation during solidification is the other concept which has to be studied. In addition, the solidification shrinkage can be affected by the volume change of liquid metals due to the structure change of liquid. In this work, first, the solidification shrinkage was measured in copper-lead base alloys by a dilatometer which was developed to use for melting and solidification processes. The volume change was measured during primary solidification and monotectic reaction. The macrostructure evaluation of samples was used to explain the volume change results. A shrinkage model was used to explain the volume changes during solidification. In addition, the microsegregation of alloying elements was studied in the alloys.   In the second part, the solidification of brass alloys was investigated in different cooling rates. Microstructure evaluation showed that the peritectic transformation occurred as diffusionless (partitionless) as well as the diffusion-controlled transformation. In addition, the volume change was measured in the peritectic alloys. A theoretical analysis was developed to evaluate the volume change effect on the peritectic reaction.   Hot crack formation was investigated during the solidification of peritectic steels as a volume change concept during the transformation of ferrite to austenite. A series of in situ solidification experiments was performed using a MTS tensile testing machine combined with a mirror furnace to measure the sample temperature and the force change during solidification. It was observed that a rise in tensile force began with the start of solidification and suddenly dropped. The sudden drop of force, which occurred around the peritectic temperature of the alloy, was accompanied by a crack or a refilled crack in the microstructure. Furthermore, the peritectic reaction types were studied theoretically and experimentally to understand their effects on the force change during solidification. The analyses showed that the volume change due to the peritectic transformation is a reason for crack formation. In addition, when the peritectic reaction occurred as a diffusionless manner (partitionless), the crack formation is more probable.   In the last study, the effect of cooling rate and super heat temperature were studied on the precipitation of primary silicon in Al-Si hypereutectic alloys. The liquidus temperature was found to decrease with cooling rate. In addition, the fraction of primary silicon decreased with increasing the cooling rate and the super heat temperature. Furthermore, the morphology of the primary silicon changed as an effect of cooling rate and super heat temperature. It was concluded that the solidification characteristic and silicon morphology relate to the liquid structure. / QC 20100726

Page generated in 0.0856 seconds