• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formalismes non classiques pour le traitement informatique de la topologie et de la géométrie discrète

Chollet, Agathe 07 December 2010 (has links) (PDF)
L'objet de ce travail est l'utilisation de certains formalismes non classiques (analyses non standard, analyses constructives) afin de proposer des bases théoriques nouvelles autour des problèmes de discrétisations d'objets continus. Ceci est fait en utilisant un modèle discret du système des nombres réels appelé droite d'Harthong-Reeb ainsi que la méthode arithmétisation associée qui est un processus de discrétisation des fonctions continues. Cette étude repose sur un cadre arithmétique non standard. Dans un premier temps, nous utilisons une version axiomatique de l'arithmétique non standard. Puis, dans le but d'améliorer le contenu constructif de notre méthode, nous utilisons une autre approche de l'arithmétique non standard découlant de la théorie des Ω-nombres de Laugwitz et Schmieden. Cette seconde approche amène à une représentation discrète et multi-résolution de fonctions continues.Finalement, nous étudions dans quelles mesures, la droite d'Harthong-Reeb satisfait les axiomes de Bridges décrivant le continu constructif.
2

Formalismes non classiques pour le traitement informatique de la topologie et de la géométrie discrète / Non classical formalisms for the computing treatment of the topoligy and the discrete geometry

Chollet, Agathe 07 December 2010 (has links)
L’objet de ce travail est l’utilisation de certains formalismes non classiques (analyses non standard, analyses constructives) afin de proposer des bases théoriques nouvelles autour des problèmes de discrétisations d’objets continus. Ceci est fait en utilisant un modèle discret du système des nombres réels appelé droite d’Harthong-Reeb ainsi que la méthode arithmétisation associée qui est un processus de discrétisation des fonctions continues. Cette étude repose sur un cadre arithmétique non standard. Dans un premier temps, nous utilisons une version axiomatique de l’arithmétique non standard. Puis, dans le but d’améliorer le contenu constructif de notre méthode, nous utilisons une autre approche de l’arithmétique non standard découlant de la théorie des Ω-nombres de Laugwitz et Schmieden. Cette seconde approche amène à une représentation discrète et multi-résolution de fonctions continues.Finalement, nous étudions dans quelles mesures, la droite d’Harthong-Reeb satisfait les axiomes de Bridges décrivant le continu constructif. / The aim of this work is to introduce new theoretical basis for the discretization of continuous objects using non classical formalisms. This is done using a discrete model of the continuum called the Harthong-Reeb line together with the related arithmetization method which is a discretisation process of continuous functions. This study stands on a nonstandard arithmetical framework. Firstly, we use an axiomatic version of nonstandard arithmetic. In order to improve the constructive content of our method, the next step is to use another approach of nonstandard arithmetic deriving from the theory of Ω-numbers by Laugwitzand Schmieden. This second approach leads to a discrete multi-resolution representation of continuous functions. Afterwards, we investigate to what extent the Harthong-Reeb line fits Bridges axioms of the constructive continuum.
3

Formalisation des nombres algébriques : construction et théorie du premier ordre.

Cohen, Cyril 20 November 2012 (has links) (PDF)
Cette thèse présente une formalisation des nombres algébriques et de leur théorie. Elle apporte deux nouvelles contributions importantes à la formalisation de résultats mathématiques dans des assistants à la preuve, ici Coq : la construction intuitionniste des nombres algébriques réels et la preuve qu'ils constituent un corps réel clos, ainsi que la programmation et la certification de procédures d'élimination des quantificateurs pour les théories des corps algébriquement clos et des corps réels clos. Pour atteindre ces résultats, nous avons apporté des contributions aux outils et aux méthodologies de preuves et de formalisation des mathématiques en Coq. En particulier, nous fournissons pour Coq/SSReflect un cadre pour travailler avec des types quotients. Nous fournissons une bibliothèque complète sur les structures algébriques de nombres ordonnés et normés. Nous avons réalisé une courte implémentation des réels de Cauchy accompagnée de tactiques pour effectuer facilement des raisonnements comportant des affirmations de la forme "soit n un entier suffisamment grand", couramment utilisés dans les preuves mathématiques sur papier. Nous avons également développé une petite bibliothèque d'analyse de base sur les polynômes à coefficients dans un corps réel clos. Une grande partie de nos résultats s'intègrent dans la formalisation de la preuve du théorème de Feit-Thompson et ont aussi pour objectif d'aider à certifier des procédures plus efficace d'élimination des quantificateurs sur les réels.
4

Sur les groupes d’homotopie des sphères en théorie des types homotopiques / On the homotopy groups of spheres in homotopy type theory

Brunerie, Guillaume 15 June 2016 (has links)
L’objectif de cette thèse est de démontrer que π4(S3) ≃ Z/2Z en théorie des types homotopiques. En particulier, c’est une démonstration constructive et purement homotopique. On commence par rappeler les concepts de base de la théorie des types homotopiques et on démontre quelques résultats bien connus sur les groupes d’homotopie des sphères : le calcul des groupes d’homotopie du cercle, le fait que ceux de la forme πk(Sn) avec k < n sont triviaux et la construction de la fibration de Hopf. On passe ensuite à des outils plus avancés. En particulier, on définit la construction de James, ce qui nous permetde démontrer le théorème de suspension de Freudenthal et le fait qu’il existe un entier naturel n tel que π4(S3) ≃ Z/2Z. On étudie ensuite le produit smash des sphères, on construit l’anneau de cohomologie des espaces et on introduit l’invariant de Hopf, ce qui nous permet de montrer que n est égal soit à 1, soit à 2. L’invariant de Hopf nous permet également de montrer que tous les groupes de la forme π4n−1(S2n) sont infinis. Finalement, on construit la suite exacte de Gysin, ce qui nous permet de calculer la cohomologie de CP2 et de démontrer que π4(S3) ≃ Z/2Z, et que plus généralement on a πn+1(Sn) ≃ Z/2Z pour tout n ≥ 3 / The goal of this thesis is to prove that π4(S3) ≃ Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the basic concepts of homotopy type theory, and we prove some well-known results about the homotopy groups of spheres: the computation of the homotopy groups of the circle, the triviality of those of the form πk(Sn) with k < n, and the construction of the Hopf fibration. We then move to more advanced tools. In particular, we define the James construction which allows us to prove the Freudenthal suspension theorem and the fact that there exists a natural number n such that π4(S3) ≃ Z/nZ. Then we study the smash product of spheres, we construct the cohomology ring of a space, and we introduce the Hopf invariant, allowing us to narrow down the n to either 1 or 2. The Hopf invariant also allows us to prove that all the groups of the form π4n−1(S2n) are infinite. Finally we construct the Gysin exact sequence, allowing us to compute the cohomology of CP2 and to prove that π4(S3) ≃ Z/2Z and that more generally πn+1(Sn) ≃ Z/2Z for every n ≥ 3

Page generated in 0.1088 seconds