• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuzzy Description Logics with General Concept Inclusions

Borgwardt, Stefan 01 July 2014 (has links) (PDF)
Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived.
2

Fuzzy Description Logics with General Concept Inclusions

Borgwardt, Stefan 23 May 2014 (has links)
Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived.

Page generated in 0.1026 seconds