Spelling suggestions: "subject:"amathematical approaches"" "subject:"dmathematical approaches""
1 |
Investigating the validity of the Czarnecki three phase power definitionsRens, AP, Swart, PH January 2002 (has links)
Nonsinusoidal conditions in modern power systems
require special definitions to quantify power. A clear
physical interpretation of different conditions, leading
to different phenomena, is essential to enable
engineers to relate power measurements to meaningful
physical manifestations in the power network with the
objective of tariff implementation and the design of
compensation strategies. L.S. Czarnecki originated a
number of unique power definitions in the frequency
domain that conform very well to these requirements.
Unfortunately an important, but hitherto neglected
deficiency appears to be present in the Czarnecki
definitions: Under practical conditions, the summation
of power in three-phase networks with distorted
waveforms yields erroneous results. This paper
investigates this important inherent deficiency of the
Czarnecki power theory.
|
2 |
Distribuição bivariável kappa-mu / A Bivariate kappa-mu distributionGomez Villavicencio, Mirko Alberto, 1982- 26 August 2018 (has links)
Orientador: Michel Daoud Yacoub / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T17:46:44Z (GMT). No. of bitstreams: 1
GomezVillavicencio_MirkoAlberto_M.pdf: 2402841 bytes, checksum: 68bbd5454c4ebb5de373b3e095e468b2 (MD5)
Previous issue date: 2014 / Resumo: Nesta dissertação, uma distribuição bivariável kappa -mu é apresentada. Exatas expressões para a função densidade de probabilidade conjunta, função distribuição cumulativa conjunta, e os momentos arbitrários conjuntos são encontradas. As estatísticas conjuntas são dadas em termos de seus respectivos parâmetros (kappa1 , mu1 ) e (kappa_2$, mu_2), com mu1 =mu2 = mu> 0 e arbitrários kappa1> 0 e kappa2> 0. Como exemplo de aplicação, a probabilidade de outage para o caso de dois ramos por combinação por seleção pura, combinação por razão máxima e combinação por ganho igual são apresentadas / Abstract: In this thesis, a bivariate kappa-mu model is presented. Exact expressions for the joint probability density function, joint cumulative distribution function, and joint arbitrary moments are found. The joint statistics are given in terms of their respective parameters (kappa1, mu1) and (kappa2, mu2), with mu1=mu2=mu >0 and arbitrary kappa1>0 and kappa2>0. As an application example, the outage probability of a dual-branch pure selection combining, maximo ratio combining and equal gain combining scheme are presented / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
Page generated in 0.1011 seconds