• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Onderrig van wiskunde met formele bewystegnieke

Van Staden, P. S. (Pieter Schalk) 04 1900 (has links)
Text in Afrikaans, abstract in Afrikaans and English / Hierdie studie is daarop gemik om te bepaal tot welke mate wiskundeleerlinge op skool en onderwysstudente in wiskunde, onderrig in logika ontvang as agtergrond vir strenge bewysvoering. Die formele aspek van wiskunde op hoerskool en tersiere vlak is besonder belangrik. Leerlinge en studente kom onvermydelik met hipotetiese argumente in aanraking. Hulle leer ook om die kontrapositief te gebruik in bewysvoering. Hulle maak onder andere gebruik van bewyse uit die ongerymde. Verder word nodige en voldoende voorwaardes met stellings en hulle omgekeerdes in verband gebring. Dit is dus duidelik dat 'n studie van logika reeds op hoerskool nodig is om aanvaarbare wiskunde te beoefen. Om seker te maak dat aanvaarbare wiskunde beoefen word, is dit nodig om te let op die gebrek aan beheer in die ontwikkeling van 'n taal, waar woorde meer as een betekenis het. 'n Kunsmatige taal moet gebruik word om interpretasies van uitdrukkings eenduidig te maak. In so 'n kunsmatige taal word die moontlikheid van foutiewe redenering uitgeskakel. Die eersteordepredikaatlogika, is so 'n taal, wat ryk genoeg is om die wiskunde te akkommodeer. Binne die konteks van hierdie kunsmatige taal, kan wiskundige toeriee geformaliseer word. Verskillende bewystegnieke uit die eersteordepredikaatlogika word geidentifiseer, gekategoriseer en op 'n redelik eenvoudige wyse verduidelik. Uit 'n ontleding van die wiskundesillabusse van die Departement van Onderwys, en 'n onderwysersopleidingsinstansie, volg dit dat leerlinge en studente hierdie bewystegnieke moet gebruik. Volgens hierdie sillabusse moet die leerlinge en studente vertroud wees met logiese argumente. Uit die gevolgtrekkings waartoe gekom word, blyk dit dat die leerlinge en studente se agtergrond in logika geheel en al gebrekkig en ontoereikend is. Dit het tot gevolg dat hulle nie 'n volledige begrip oor bewysvoering het nie, en 'n gebrekkige insig ontwikkel oor wat wiskunde presies behels. Die aanbevelings om hierdie ernstige leemtes in die onderrig van wiskunde aan te spreek, asook verdere navorsingsprojekte word in die laaste hoofstuk verwoord. / The aim of this study is to determine to which extent pupils taking Mathematics at school level and student teachers of Mathematics receive instruction in logic as a grounding for rigorous proof. The formal aspect of Mathematics at secondary school and tertiary levels is extremely important. It is inevitable that pupils and students become involved with hypothetical arguments. They also learn to use the contrapositive in proof. They use, among others, proofs by contradiction. Futhermore, necessary and sufficient conditions are related to theorems and their converses. It is therefore apparent that the study of logic is necessary already at secondary school level in order to practice Mathematics satisfactorily. To ensure that acceptable Mathematics is practised, it is necessary to take cognizance of the lack of control over language development, where words can have more than one meaning. For this reason an artificial language must be used so that interpretations can have one meaning. Faulty interpretations are ruled out in such an artificial language. A language which is rich enough to accommodate Mathematics is the first-order predicate logic. Mathematical theories can be formalised within the context of this artificial language. Different techniques of proof from the first-order logic are identified, categorized and explained in fairly simple terms. An analysis of Mathematics syllabuses of the Department of Education and an institution for teacher training has indicated that pupils should use these techniques of proof. According to these syllabuses pupils should be familiar with logical arguments. The conclusion which is reached, gives evidence that pupils' and students' background in logic is completely lacking and inadequate. As a result they cannot cope adequately with argumentation and this causes a poor perception of what Mathematics exactly entails. Recommendations to bridge these serious problems in the instruction of Mathematics, as well as further research projects are discussed in the final chapter. / Curriculum and Institutional Studies / D. Phil. (Wiskundeonderwys)
2

Onderrig van wiskunde met formele bewystegnieke

Van Staden, P. S. (Pieter Schalk) 04 1900 (has links)
Text in Afrikaans, abstract in Afrikaans and English / Hierdie studie is daarop gemik om te bepaal tot welke mate wiskundeleerlinge op skool en onderwysstudente in wiskunde, onderrig in logika ontvang as agtergrond vir strenge bewysvoering. Die formele aspek van wiskunde op hoerskool en tersiere vlak is besonder belangrik. Leerlinge en studente kom onvermydelik met hipotetiese argumente in aanraking. Hulle leer ook om die kontrapositief te gebruik in bewysvoering. Hulle maak onder andere gebruik van bewyse uit die ongerymde. Verder word nodige en voldoende voorwaardes met stellings en hulle omgekeerdes in verband gebring. Dit is dus duidelik dat 'n studie van logika reeds op hoerskool nodig is om aanvaarbare wiskunde te beoefen. Om seker te maak dat aanvaarbare wiskunde beoefen word, is dit nodig om te let op die gebrek aan beheer in die ontwikkeling van 'n taal, waar woorde meer as een betekenis het. 'n Kunsmatige taal moet gebruik word om interpretasies van uitdrukkings eenduidig te maak. In so 'n kunsmatige taal word die moontlikheid van foutiewe redenering uitgeskakel. Die eersteordepredikaatlogika, is so 'n taal, wat ryk genoeg is om die wiskunde te akkommodeer. Binne die konteks van hierdie kunsmatige taal, kan wiskundige toeriee geformaliseer word. Verskillende bewystegnieke uit die eersteordepredikaatlogika word geidentifiseer, gekategoriseer en op 'n redelik eenvoudige wyse verduidelik. Uit 'n ontleding van die wiskundesillabusse van die Departement van Onderwys, en 'n onderwysersopleidingsinstansie, volg dit dat leerlinge en studente hierdie bewystegnieke moet gebruik. Volgens hierdie sillabusse moet die leerlinge en studente vertroud wees met logiese argumente. Uit die gevolgtrekkings waartoe gekom word, blyk dit dat die leerlinge en studente se agtergrond in logika geheel en al gebrekkig en ontoereikend is. Dit het tot gevolg dat hulle nie 'n volledige begrip oor bewysvoering het nie, en 'n gebrekkige insig ontwikkel oor wat wiskunde presies behels. Die aanbevelings om hierdie ernstige leemtes in die onderrig van wiskunde aan te spreek, asook verdere navorsingsprojekte word in die laaste hoofstuk verwoord. / The aim of this study is to determine to which extent pupils taking Mathematics at school level and student teachers of Mathematics receive instruction in logic as a grounding for rigorous proof. The formal aspect of Mathematics at secondary school and tertiary levels is extremely important. It is inevitable that pupils and students become involved with hypothetical arguments. They also learn to use the contrapositive in proof. They use, among others, proofs by contradiction. Futhermore, necessary and sufficient conditions are related to theorems and their converses. It is therefore apparent that the study of logic is necessary already at secondary school level in order to practice Mathematics satisfactorily. To ensure that acceptable Mathematics is practised, it is necessary to take cognizance of the lack of control over language development, where words can have more than one meaning. For this reason an artificial language must be used so that interpretations can have one meaning. Faulty interpretations are ruled out in such an artificial language. A language which is rich enough to accommodate Mathematics is the first-order predicate logic. Mathematical theories can be formalised within the context of this artificial language. Different techniques of proof from the first-order logic are identified, categorized and explained in fairly simple terms. An analysis of Mathematics syllabuses of the Department of Education and an institution for teacher training has indicated that pupils should use these techniques of proof. According to these syllabuses pupils should be familiar with logical arguments. The conclusion which is reached, gives evidence that pupils' and students' background in logic is completely lacking and inadequate. As a result they cannot cope adequately with argumentation and this causes a poor perception of what Mathematics exactly entails. Recommendations to bridge these serious problems in the instruction of Mathematics, as well as further research projects are discussed in the final chapter. / Curriculum and Institutional Studies / D. Phil. (Wiskundeonderwys)

Page generated in 0.0829 seconds