• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 462
  • 32
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 10
  • 6
  • 6
  • Tagged with
  • 683
  • 683
  • 142
  • 141
  • 115
  • 89
  • 86
  • 57
  • 55
  • 49
  • 49
  • 40
  • 38
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

A Non-Gaussian Limit Process with Long-Range Dependence

Gaigalas, Raimundas January 2004 (has links)
<p>This thesis, consisting of three papers and a summary, studies topics in the theory of stochastic processes related to long-range dependence. Much recent interest in such probabilistic models has its origin in measurements of Internet traffic data, where typical characteristics of long memory have been observed. As a macroscopic feature, long-range dependence can be mathematically studied using certain scaling limit theorems. </p><p>Using such limit results, two different scaling regimes for Internet traffic models have been identified earlier. In one of these regimes traffic at large scales can be approximated by long-range dependent Gaussian or stable processes, while in the other regime the rescaled traffic fluctuates according to stable ``memoryless'' processes with independent increments. In Paper I a similar limit result is proved for a third scaling scheme, emerging as an intermediate case of the other two. The limit process here turns out to be a non-Gaussian and non-stable process with long-range dependence.</p><p>In Paper II we derive a representation for the latter limit process as a stochastic integral of a deterministic function with respect to a certain compensated Poisson random measure. This representation enables us to study some further properties of the process. In particular, we prove that the process at small scales behaves like a Gaussian process with long-range dependence, while at large scales it is close to a stable process with independent increments. Hence, the process can be regarded as a link between these two processes of completely different nature.</p><p>In Paper III we construct a class of processes locally behaving as Gaussian and globally as stable processes and including the limit process obtained in Paper I. These processes can be chosen to be long-range dependent and are potentially suitable as models in applications with distinct local and global behaviour. They are defined using stochastic integrals with respect to the same compensated Poisson random measure as used in Paper II.</p>
552

A Non-Gaussian Limit Process with Long-Range Dependence

Gaigalas, Raimundas January 2004 (has links)
This thesis, consisting of three papers and a summary, studies topics in the theory of stochastic processes related to long-range dependence. Much recent interest in such probabilistic models has its origin in measurements of Internet traffic data, where typical characteristics of long memory have been observed. As a macroscopic feature, long-range dependence can be mathematically studied using certain scaling limit theorems. Using such limit results, two different scaling regimes for Internet traffic models have been identified earlier. In one of these regimes traffic at large scales can be approximated by long-range dependent Gaussian or stable processes, while in the other regime the rescaled traffic fluctuates according to stable ``memoryless'' processes with independent increments. In Paper I a similar limit result is proved for a third scaling scheme, emerging as an intermediate case of the other two. The limit process here turns out to be a non-Gaussian and non-stable process with long-range dependence. In Paper II we derive a representation for the latter limit process as a stochastic integral of a deterministic function with respect to a certain compensated Poisson random measure. This representation enables us to study some further properties of the process. In particular, we prove that the process at small scales behaves like a Gaussian process with long-range dependence, while at large scales it is close to a stable process with independent increments. Hence, the process can be regarded as a link between these two processes of completely different nature. In Paper III we construct a class of processes locally behaving as Gaussian and globally as stable processes and including the limit process obtained in Paper I. These processes can be chosen to be long-range dependent and are potentially suitable as models in applications with distinct local and global behaviour. They are defined using stochastic integrals with respect to the same compensated Poisson random measure as used in Paper II.
553

On Methods for Real Time Sampling and Distributions in Sampling

Meister, Kadri January 2004 (has links)
This thesis is composed of six papers, all dealing with the issue of sampling from a finite population. We consider two different topics: real time sampling and distributions in sampling. The main focus is on Papers A–C, where a somewhat special sampling situation referred to as real time sampling is studied. Here a finite population passes or is passed by the sampler. There is no list of the population units available and for every unit the sampler should decide whether or not to sample it when he/she meets the unit. We focus on the problem of finding suitable sampling methods for the described situation and some new methods are proposed. In all, we try not to sample units close to each other so often, i.e. we sample with negative dependencies. Here the correlations between the inclusion indicators, called sampling correlations, play an important role. Some evaluation of the new methods are made by using a simulation study and asymptotic calculations. We study new methods mainly in comparison to standard Bernoulli sampling while having the sample mean as an estimator for the population mean. Assuming a stationary population model with decreasing autocorrelations, we have found the form for the nearly optimal sampling correlations by using asymptotic calculations. Here some restrictions on the sampling correlations are used. We gain most in efficiency using methods that give negatively correlated indicator variables, such that the correlation sum is small and the sampling correlations are equal for units up to lag m apart and zero afterwards. Since the proposed methods are based on sequences of dependent Bernoulli variables, an important part of the study is devoted to the problem of how to generate such sequences. The correlation structure of these sequences is also studied. The remainder of the thesis consists of three diverse papers, Papers D–F, where distributional properties in survey sampling are considered. In Paper D the concern is with unified statistical inference. Here both the model for the population and the sampling design are taken into account when considering the properties of an estimator. In this paper the framework of the sampling design as a multivariate distribution is used to outline two-phase sampling. In Paper E, we give probability functions for different sampling designs such as conditional Poisson, Sampford and Pareto designs. Methods to sample by using the probability function of a sampling design are discussed. Paper F focuses on the design-based distributional characteristics of the π-estimator and its variance estimator. We give formulae for the higher-order moments and cumulants of the π-estimator. Formulae of the design-based variance of the variance estimator, and covariance of the π-estimator and its variance estimator are presented.
554

Aspects of copulas and goodness-of-fit

Kpanzou, Tchilabalo Abozou 12 1900 (has links)
Thesis (MComm (Statistics and Actuarial Science))--Stellenbosch University, 2008. / The goodness-of- t of a statistical model describes how well it ts a set of observations. Measures of goodness-of- t typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, for example to test for normality, to test whether two samples are drawn from identical distributions, or whether outcome frequencies follow a speci ed distribution. Goodness-of- t for copulas is a special case of the more general problem of testing multivariate models, but is complicated due to the di culty of specifying marginal distributions. In this thesis, the goodness-of- t test statistics for general distributions and the tests for copulas are investigated, but prior to that an understanding of copulas and their properties is developed. In fact copulas are useful tools for understanding relationships among multivariate variables, and are important tools for describing the dependence structure between random variables. Several univariate, bivariate and multivariate test statistics are investigated, the emphasis being on tests for normality. Among goodness-of- t tests for copulas, tests based on the probability integral transform, Rosenblatt's transformation, as well as some dimension reduction techniques are considered. Bootstrap procedures are also described. Simulation studies are conducted to rst compare the power of rejection of the null hypothesis of the Clayton copula by four di erent test statistics under the alternative of the Gumbel-Hougaard copula, and also to compare the power of rejection of the null hypothesis of the Gumbel-Hougaard copula under the alternative of the Clayton copula. An application of the described techniques is made to a practical data set.
555

Streamflow extremes and climate variability in Southeastern United States

Unknown Date (has links)
Trends in streamflow extremes at a regional scale linked to the possible influences of four major oceanic-atmospheric oscillations are analyzed in this study. Oscillations considered include: El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO). The main emphasis is low flows in the South-Atlantic Gulf region of the United States. Several standard drought indices of low flow extremes during two different phases (warm/positive and cool/negative) of these oscillations are evaluated. Long-term streamflow data at 43 USGS sites in the region from the Hydro-Climatic Data Network that are least affected by anthropogenic influences are used for analysis. Results show that for ENSO, low flow indices were more likely to occur during La Niña phase; however, longer deficits were more likely during El Niño phase. Results also show that for PDO (AMO), all (most) low flow indices occur during the cool (warm) phase. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
556

Stochastic optimal impulse control of jump diffusions with application to exchange rate

Unknown Date (has links)
We generalize the theory of stochastic impulse control of jump diffusions introduced by Oksendal and Sulem (2004) with milder assumptions. In particular, we assume that the original process is affected by the interventions. We also generalize the optimal central bank intervention problem including market reaction introduced by Moreno (2007), allowing the exchange rate dynamic to follow a jump diffusion process. We furthermore generalize the approximation theory of stochastic impulse control problems by a sequence of iterated optimal stopping problems which is also introduced in Oksendal and Sulem (2004). We develop new results which allow us to reduce a given impulse control problem to a sequence of iterated optimal stopping problems even though the original process is affected by interventions. / by Sandun C. Perera. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
557

Towards robust discovery systems

Viswanathan, Murlikrishna January 2003 (has links)
Abstract not available
558

Latent variable models for longitudinal twin data

Dominicus, Annica January 2006 (has links)
<p>Longitudinal twin data provide important information for exploring sources of variation in human traits. In statistical models for twin data, unobserved genetic and environmental factors influencing the trait are represented by latent variables. In this way, trait variation can be decomposed into genetic and environmental components. With repeated measurements on twins, latent variables can be used to describe individual trajectories, and the genetic and environmental variance components are assessed as functions of age. This thesis contributes to statistical methodology for analysing longitudinal twin data by (i) exploring the use of random change point models for modelling variance as a function of age, (ii) assessing how nonresponse in twin studies may affect estimates of genetic and environmental influences, and (iii) providing a method for hypothesis testing of genetic and environmental variance components. The random change point model, in contrast to linear and quadratic random effects models, is shown to be very flexible in capturing variability as a function of age. Approximate maximum likelihood inference through first-order linearization of the random change point model is contrasted with Bayesian inference based on Markov chain Monte Carlo simulation. In a set of simulations based on a twin model for informative nonresponse, it is demonstrated how the effect of nonresponse on estimates of genetic and environmental variance components depends on the underlying nonresponse mechanism. This thesis also reveals that the standard procedure for testing variance components is inadequate, since the null hypothesis places the variance components on the boundary of the parameter space. The asymptotic distribution of the likelihood ratio statistic for testing variance components in classical twin models is derived, resulting in a mixture of chi-square distributions. Statistical methodology is illustrated with applications to empirical data on cognitive function from a longitudinal twin study of aging. </p>
559

Estimation of wood fibre length distributions from censored mixture data

Svensson, Ingrid January 2007 (has links)
<p>The motivating forestry background for this thesis is the need for fast, non-destructive, and cost-efficient methods to estimate fibre length distributions in standing trees in order to evaluate the effect of silvicultural methods and breeding programs on fibre length. The usage of increment cores is a commonly used non-destructive sampling method in forestry. An increment core is a cylindrical wood sample taken with a special borer, and the methods proposed in this thesis are especially developed for data from increment cores. Nevertheless the methods can be used for data from other sampling frames as well, for example for sticks with the shape of an elongated rectangular box.</p><p>This thesis proposes methods to estimate fibre length distributions based on censored mixture data from wood samples. Due to sampling procedures, wood samples contain cut (censored) and uncut observations. Moreover the samples consist not only of the fibres of interest but of other cells (fines) as well. When the cell lengths are determined by an automatic optical fibre-analyser, there is no practical possibility to distinguish between cut and uncut cells or between fines and fibres. Thus the resulting data come from a censored version of a mixture of the fine and fibre length distributions in the tree. The methods proposed in this thesis can handle this lack of information.</p><p>Two parametric methods are proposed to estimate the fine and fibre length distributions in a tree. The first method is based on grouped data. The probabilities that the length of a cell from the sample falls into different length classes are derived, the censoring caused by the sampling frame taken into account. These probabilities are functions of the unknown parameters, and ML estimates are found from the corresponding multinomial model.</p><p>The second method is a stochastic version of the EM algorithm based on the individual length measurements. The method is developed for the case where the distributions of the true lengths of the cells at least partially appearing in the sample belong to exponential families. The cell length distribution in the sample and the conditional distribution of the true length of a cell at least partially appearing in the sample given the length in the sample are derived. Both these distributions are necessary in order to use the stochastic EM algorithm. Consistency and asymptotic normality of the stochastic EM estimates is proved.</p><p>The methods are applied to real data from increment cores taken from Scots pine trees (Pinus sylvestris L.) in Northern Sweden and further evaluated through simulation studies. Both methods work well for sample sizes commonly obtained in practice.</p>
560

Perturbed Renewal Equations with Non-Polynomial Perturbations

Ni, Ying January 2010 (has links)
<p>This thesis deals with a model of nonlinearly perturbed continuous-time renewal equation with nonpolynomial perturbations. The characteristics, namely the defect and moments, of the distribution function generating the renewal equation are assumed to have expansions with respect to a non-polynomial asymptotic scale: $\{\varphi_{\nn} (\varepsilon) =\varepsilon^{\nn \cdot \w}, \nn \in \mathbf{N}_0^k\}$  as $\varepsilon \to 0$, where $\mathbf{N}_0$ is the set of non-negative integers, $\mathbf{N}_0^k \equiv \mathbf{N}_0 \times \cdots \times \mathbf{N}_0, 1\leq k <\infty$ with the product being taken $k$ times and $\w$ is a $k$ dimensional parameter vector that satisfies certain properties. For the one-dimensional case, i.e., $k=1$, this model reduces to the model of nonlinearly perturbed renewal equation with polynomial perturbations which is well studied in the literature.  The goal of the present study is to obtain the exponential asymptotics for the solution to the perturbed renewal equation in the form of exponential asymptotic expansions and present possible applications.</p><p>The thesis is based on three papers which study successively the model stated above. Paper A investigates the two-dimensional case, i.e. where $k=2$. The corresponding asymptotic exponential expansion for the solution to the perturbed renewal equation is given. The asymptotic results are applied to an example of the perturbed risk process, which leads to diffusion approximation type asymptotics for the ruin probability.  Numerical experimental studies on this example of perturbed risk process are conducted in paper B, where Monte Carlo simulation are used to study the accuracy and properties of the asymptotic formulas. Paper C presents the asymptotic results for the more general case where the dimension $k$ satisfies $1\leq k <\infty$, which are applied to the asymptotic analysis of the ruin probability in an example of perturbed risk processes with this general type of non-polynomial perturbations.  All the proofs of the theorems stated in paper C are collected in its supplement: paper D.</p>

Page generated in 0.1217 seconds