Spelling suggestions: "subject:"mathematicsitude anda teaching"" "subject:"mathematicsitude ando teaching""
301 |
Media integration in the teaching of mathematics in the Pre-primary and Primary schoolsSeopo-Sengwe, Mmamapalo Elinah 11 1900 (has links)
The fundamental purpose of this research is to establish whether mathematics can be taught
effectively with the use of appropriate media and to further establish the possible effects of
media in the teaching of mathematics.
The research touched on the principles and guidelines of media selection and the various
methods that could be utilized in conjunction with media in the teaching of mathematics in the
pre-primary and primary schools.
In media selection, the emphasis was that media must be chosen objectively rather than on
the basis of personal preference and that the effectiveness of media is dependent on the
suitability of the physical conditions surrounding it.
The overall findings regarding media utilization is that most educators believe that media
used in conjunction with a suitable or appropriate method should help to actualize what is
expected from the learner.
The research method in this study can be divided into a literature study and an empirical
investigation. The literature study was done with a view to support the introductory
orientation of this study.
The focus was on learning as an active process, it also highlighted how the young learners
acquire knowledge and how their interaction with their environment impacts on their cognitive
development. The research also dealt with concept formation with special reference to the
variety of concepts such as physical sensory concepts, action-function concepts, evaluative
concepts and abstract concepts.
The questionnaire was used to gather data from seventy (70) educators about media
integration in the teaching of mathematics in the pre-primary and primary schools. An
observation guide was also used during the observation of the presentation of twelve (12)
lessons by eight (8) teachers from the pre-primary and primary schools. The lessons
included the nature and characteristics of media employed in the lessons.
The following factors were taken into account:
(a) lesson plan layout
(b) specific outcomes
(c) contact accuracy and relevance
(d) learner variables and interest
(e) the learning environment and
(ij the mediation capabilities of the educator
(g) availability of media in schools
The discussion of data collected was followed by the data analysis and interpretation. The
statistical techniques were used to put the researcher in a position to either reject or accept
the null hypothesis. The techniques used were the Wilcoxon Signed Ranks Test, the
Pearson Correlation coefficient, the NPar Test and Friedman Test.
On the basis of the findings the researcher has sufficient, concrete evidence to conclude that
the results invalidate the null hypothesis tested. Therefore the researcher's conclusion is that:
(a) there is a possible effect of media in the teaching of mathematics lessons in the preprimary
and primary schools.
(b) there is a possible effect of media selection and integration of media in mathematics
lessons. / Psychology of Education / D. Ed. (Psychology of Education)
|
302 |
Investigating the effectiveness of problem-based learning in the further mathematics classroomFatade, Alfred Olufemi 11 1900 (has links)
The study investigated the effectiveness of Problem-based learning (PBL) in the Further Mathematics classrooms in Nigeria within the blueprint of pre-test-post-test non-equivalent control group quasi-experimental design. The target population consisted of all Further Mathematics students in the Senior Secondary School year one in Ijebu division of Ogun State, Nigeria. Using purposive and simple random sampling techniques, two schools were selected from eight schools that were taking Further Mathematics. One school was randomly assigned as the experimental while the other as the control school. Intact classes were used and in all, 96 students participated in the study (42 in the experimental group taught by the researcher with the PBL and 54 in the control group taught by the regular Further Mathematics teacher using the Traditional Method (TM)). Four research questions and four research hypotheses were raised, answered, and tested in the study. Four research instruments namely pre-test manipulated at two levels: Researcher-Designed Test (RDT) (r = 0.87) and Teacher- Made Test (TMT) (r = 0.88); post-test manipulated at two levels: RDT and TMT; pre-treatment survey of Students Beliefs about Further Mathematics Questionnaire (SBFMQ) (r = 0.86); and post-treatment survey of SBFMQ were developed for the study. The study lasted thirteen weeks (three weeks for pilot study and ten weeks for main study) and data collected were analysed using Mean, Standard deviation, Independent Samples t-test statistic, and Analysis of Variance. Results showed that there were statistically significant differences in the mean post-test achievement scores on TMT (t=-3.58, p<0.05), mean post-test achievement scores on RDT (t=-5.92, p<0.05) and mean post-treatment scores on SBFMQ (t=-6.22, p<0.05) between students exposed to the PBL and those exposed to the TM, all in favour of the PBL group. Results also revealed that there was statistically significant difference in the post-test achievement scores on TMT at knowledge (t= -23.97, p<0.05) and application (t= -11.41, p<0.05) but not at comprehension (t= -0.50, p>0.05, ns) levels of cognition between students exposed to the PBL and the TM.
Based on the results, the study recommended that the PBL should be adopted as alternative instructional strategy to the TM in enhancing meaningful learning in Further Mathematics classrooms and efforts should be made to integrate the philosophy of PBL into the pre-service teachers’ curriculum at the teacher-preparation institutions in Nigeria. / Science and Technology Education / D. Phil. (Mathematics, Science and Technology Education)
|
303 |
An analysis of grade 10 mathematics task perform from a feeder school perspectiveMakgaleng, Mphalele Peter. January 2015 (has links)
M. Tech. Education / There are two systems of secondary education in South Africa. Some secondary schools are composed of five grades: 8 to 12 (Secondary System A, SS-A), while others start at Grade 10-12 (Secondary System B, SS-B). As can be anticipated, these two systems are compositionally different, with schools in SS-B being dependent on feeder schools around them for enrolment of Grade 10 learners every year. This means that the composition of Grade 10 learners in these two systems is not the same. This study acknowledges that there are important differences in Grade 10 learners belonging to these two systems.
|
304 |
Pre-service teachers' handling of linear algebra in a problem-centred approachGeorge, Salimma 03 1900 (has links)
Thesis (MEd)--University of Stellenbsoch, 2001. / ENGLISH ABSTRACT: The primary concern of the study is how pre-service teachers perform after they have
been exposed to a section of a linear algebra course based on the problem-centred
approach. The students were in their final (3rd
) year of a teacher education course at
a college of education which prepares them to teach mathematics at high school
level. Sixty students, who formed the experimental group, were exposed to a linear
algebra section, which was underpinned by the tenets of the problem-centred
approach. The control group comprised of 60 students of similar mathematical
background and they were taught the linear algebra section in the conventional way.
The main study is preceded by an overview of the history of the teaching of linear
algebra and this overview rendered that certain aspects of linear algebra were
historically taught in context. Furthermore an analysis of current secondary school
mathematics curricula indicated that there are components of linear algebra present
in these syllabi.
To test whether there was any significant effect of the experimental course, both
groups were subjected to the same linear algebra test items at the end of the
experimental period. The null hypothesis tested was: there will be no significant
difference between the achievement scores of the experimental and control groups.
A simple statistical two-tailed test for the difference between two means was done.
This test confirmed the rejection of the null hypothesis at the 0,01 level of
significance. It is thus accepted that the superior achievement of the experimental
group was due to the intervention - approaching aspects of linear algebra through
the problem-centred approach. To get an indication of the strategies the experimental group followed to solve linear
algebra problems, an analysis was done of the written work of the students. This
analysis showed that students applied an absolute calculation strategy to seek
solutions to the problems.
The study had the following limitations:
1. The students were not representative of the pre-service secondary teachers in
South Africa. Only students from the developing population group were involved.
2. The students were not randomly assigned to the experimental and control group.
They were in their normal college classes .
. Notwithstanding the above limitations it is recommended that:
1. The problem-centred approach, which support the ideals of outcomes-based
education, be applied to a major part of the South African school and college of
education mathematics syllabi.
2. Appropriate assessment procedures consonant with the problem-centered
approach are installed.
3. Adequate support systems are put in place to support teacher transition from the
conventional to the problem-centred approach. / AFRIKAANSE OPSOMMING: Die primêre fokus van die studie is die effek van In lineêre algebra kursus, aangebied
volgens die probleem-gesentreerde benadering, op kollege onderwysstudente. Die
studente was in hulle finale (3de) jaar van In kursus aan In onderwyskollege wat hulle
voorberei om wiskunde op hoërskoolvlak te onderrig. Die eksperimentele groep,
bestaande uit 60 studente, het aspekte van lineêre algebra geleer, onderrig volgens
die probleem-gesentreerde benadering. Die kontrolegroep, bestaande uit 60
studente met omtrent dieselfde wiskunde agtergrond, het dieselfde lineêre algebra
geleer, onderrig volgens die konvensionele metode.
Die hoofstudie is voorafgegaan deur In oorsig van die geskiedenis van die onderrig
van lineêre algebra, wat getoon het dat dat sekere aspekte van lineêre algebra
histories in konteks onderrig is. In Ontleding van die huidige hoërkool wiskundekurrikulum
toon dat dit komponente van lineêre algebra bevat.
Om die impak van die eksperimentele kursus te bepaal, het beide groepe aan die
einde van die eksperimentele periode dieselfde lineêre algebra toetsitems voltooi.
Die volgende nul-hipotese is getoets: Daar is geen beduidende verskil tussen die
prestasies van die eksperimentele en die kontrole groepe nie. In Eenvoudige tweevlerk
statistiese toets vir die verskil tussen twee gemiddeldes is gedoen. Die toets
bevestig die verwerping van die nul-hipotese op die 0,01 vlak van beduidendheid.
Dit word dus aanvaar dat die beter prestasie van die eksperimentele groep
toegeskryf kan word aan die intervensie, naamlik die leer van lineêre algebra volgens
die probleem-gesentreerde benadering. Om "n aanduiding te kry van die strategieë wat die eksperimentele groep gebruik het
in die oplos van lineêre algebra probleme, is die geskrewe werk van die studente
ontleed. Die ontleding het getoon dat studente 'n absolute rekenstrategie gebruik het
om oplossings vir die probleme te soek.
Die studie het die volgende beperkings:
1. Die studente was nie verteenwoordigend van sekondêre onderwysstudente in
Suid Afrika nie. Slegs studente uit die onwikkelinggroep was betrokke.
2. Die studente is nie willekeurig aan die eksperimentele en kontrole groepe
toegewys nie. Hulle was in hul gewone kollege klasse.
Ondanks die bogenoemde beperkings, word daar aanbeveel dat:
1. Die probleem-gesentreerde benadering, wat die beginsels van uitkomsgebaseerde
onderwys ondersteun, behoort in die wiskunde kurrikulum vir
skole en onderwyserskolleges gebruik te word.
2. Gepaste assesseringsmetodes, soos in die probleem-gesentreerde
benadering gebruik, moet toegepas word.
3. Doeltreffende ondersteuningstelsels moet geïmplementeer word om
onderwysers te ondersteun in huloorgang na die probleem-gesentreerde
benadering.
|
305 |
Improving mathematics teaching and learning through generating and solving algebra problemsMudaheranwa, G. 12 1900 (has links)
Thesis (MEd)--Stellenbosch University, 2002. / ENGLISH ABSTRACT: In many countries, due to a growing criticism of the inadequacy of mathematics
curricula, reforms have been undertaken across the world for meeting new social and
technological needs and many researchers have begun to pay attention to the way
mathematics is learned and taught. In the same vein, this study aims to investigate
innovative and appropriate teaching strategies to introduce in the Rwandan
educational system in order to foster students' mathematical thinking and problem
solving skills. For this, a classroom-based research experiment was undertaken,
focusing on meticulous observation, description and critical analysis of mathematics
teaching and learning situations.
In the preparation of the research experiment, three mathematics teachers were helped
to acquire proficiency in doing mathematics and to refine their teaching strategies, as
well as to enable them to create a mathematics classroom culture that fosters students'
understanding of mathematics through the problem solving process.
Three classes of 121 students of the second year, their ages ranging from 14 years to
16 years, chosen from three different secondary schools in Rwanda, participated in
this research experiment. Students were taught an experimental programme based on
solving contextualised algebra problems in line with the constructivist approach
towards mathematics teaching and learning. Twenty-four mathematics lessons were
observed in the three classes and students' learning activities were systematically
recorded, focusing on teacher-students and student-student interaction.
The participating teachers experienced many difficulties in implementing new
teaching strategies based on a problem solving approach but were impressed and
encouraged by their students' abilities to generate different and unexpected ways of
solving problem situations. However, the construction of mathematical models of
non-routine problems constituted the most difficult task for many students because it
required a high level of abstraction, characterising algebraic reasoning. Despite
evident cognitive obstacles, a substantial improvement in students' systematic
reasoning with respect to the different steps in the problem solving process, namely
formulating a mathematical model, solving a model, verifying the solution and
interpreting the answer, was progressively observed during the experiment. Many
students had to overcome a language problem, which inhibited their understanding
and interpretation of mathematical problem situations and deeply affected their active
participation in classroom discussions.
In this study, small group work and group discussions gave rise to excellent and
successful teaching and learning situations which were appreciated and continuously
improved up by the teachers. They provided students with opportunities for learning
to argue about their mathematical thinking and to communicate mathematically. This
kind of classroom organisation created an ideal learning environment for students but
an uncomfortable teaching situation for teachers. It required much effort from the
teachers to transform the mathematics classroom into a forum of discussion in setting
up stimulating and challenging tasks for students, in working efficiently with different
groups and in moderating the whole class discussion.
It was unrealistic to expect spectacular changes in teaching practices established over
years to take place during a period of a month. This type of change requires sufficient
time and support. However, teachers did develop a new and practical vision of
mathematics teaching strategies focusing on students' full engagement in exploring
and grappling with problematic situations in order to solve problems. Teachers made
remarkable efforts in internalising and adopting their new role of mediators of
students' mathematics learning and in being more flexible in their teaching styles.
They learned to communicate with their students, to accept students' explanations and
suggestions, to encourage their logical disagreement and to consider their errors and
misconceptions constructively.
Students' results in the pre-test and the post-test showed their low performance in
building mathematical models especially when they had to use symbols but revealed a
significant progress in the students' ways of thinking which was observed through the
variety and originality of their strategies, their systematic work and their perseverance
in solving algebra problems. Students also developed positive attitudes to do
mathematics; this was exhibited by their pride and satisfaction to accomplish nonroutine
tasks by themselves.
Teachers' comments indicated that they work under pressure to cover an overloaded
mathematics curriculum and have poor support from educational authorities. For them,
mathematics IS socially considered as a difficult subject. For many students,
mathematics IS a gatekeeper to access higher levels of education; to fail in
mathematics unfortunately implies to fail at school and in life. Students' negative
attitudes towards mathematics were mainly due to their repeated failures in
mathematics, but also to some mathematics teachers who intimidate and discourage
their students.
Both educational authorities and teachers should make efforts to rethink an
appropriate mathematics curriculum and alternative teaching strategies in order to
efficiently prepare students to meet new societal and technological requirements. / AFRIKAANSE OPSOMMING: As gevolg van toenemende kritiek oor die kwaliteit van wiskundekurrikula, is
bewegings vir hervorming wêreldwyd geïnisieer om nuwe sosiale en tegnologiese
behoeftes aan te spreek en baie navorsing is gedoen oor die wyse waarop wiskunde
geleer en onderrig word. In lyn hiermee, is die doel van hierdie studie om innoverende
en geskikte onderrigstrategieë te ondersoek om in die Rwandese onderwysstelsel in te
voer om leerders se wiskundige denke en probleemoplossingsvaardighede te
ontwikkel. Om dit te bereik, is 'n klaskamergebaseerde navorsingseksperiment
uitgevoer, met die klem op fyn waarneming, beskrywing en kritiese ontleding van
wiskunde leer- en onderrigsituasies.
As voorbereiding tot die navorsingseksperiment is drie wiskunde-onderwysers gehelp
om vaardighede te verwerf in die doen van wiskunde en om hulonderrigstrategieë te
verfyn, asook om hulle in staat te stelom 'n wiskunde-klaskamerkultuur te vestig wat
leerders se begryping van wiskunde deur die probleemoplossingsproses ontwikkel.
Drie klasse van 121 leerders in die tweede jaar, tussen 14 en 16 jaar oud, is uit drie
verskillende hoërskole in Rwanda gekies om aan die navorsing deel te neem. Die
leerders is deur middel van 'n eksperimentele program onderrig wat gebaseer is op die
oplossing van gekontekstualiseerde algebraprobleme in ooreenstemming met 'n
konstruktivistiese benadering tot wiskunde-leer en -onderrig. Vier-en-twintig
wiskundelesse is in die drie klaskamers waargeneem en leerders se leeraktiwiteite is
stelselmatig opgeskryf, met die klem op onderwyser-leerder en leerder-leerder
interaksie.
Die betrokke onderwysers het baie probleme ondervind om nuwe onderrigstrategieë
gebaseer op 'n probleemoplossingsbenadering te implementeer, maar was baie
beïndruk en begeesterd deur hulleerders se vermoë om verskillende en onverwagte
planne te beraam om probleme op te los. Die opstelling van wiskundige modelle vir
nie-roetine probleme was vir baie leerders die moeilikste taak omdat dit 'n hoë vlak
van abstraksie wat kenmerkend is van algebraïese denke verteenwoordig. Ten spyte
van kognitiewe struikelblokke was daar nogtans 'n merkbare verbetering in leerders
se logiese redeneringsprosesse soos geopenbaar in die toepassing van die verskillende
stappe van die probleemoplossingsproses, naamlik die formulering van 'n wiskundige
model, die oplossing van die model, verifiëring van die oplossing en interpretasie van
die antwoord. Baie studente is gekniehalter deur 'n taalprobleem wat hul begrip en
interpretasie van wiskundige probleemsituasies en hul vrymoedigheid om aan
klaskamergesprekke deel te neem, aan bande gelê het.
Inhierdie studie het kleingroepwerk en groepbesprekings suksesvolle onderrig- en
leersituasies geskep wat deur die onderwysers raakgesien en verder uitgebou is. Dit
het geleenthede geskep vir die leerders om oor hul wiskundige denke te argumenteer
en om wiskundig te kommunikeer. Hierdie soort klaskamerorganisasie het 'n ideale
leeromgewing vir leerders geskep maar 'n ongemaklike onderrigomgewing vir
onderwysers. Dit het baie van onderwysers geverg om die wiskundeklaskamer in 'n
gespreksforum te omskep deur stimulerende en uitdagende probleme aan leerders te
stel, deur met verskillende groepe te werk en deur die algemene
klaskamerbesprekings te fasiliteer.
Dit was onrealisties om binne die bestek van 'n maand grootskaalse veranderinge in
onderwyspraktyke wat oor 'n tydperk vanjare posgevat het, te verwag. Hierdie soort
verandering benodig genoeg tyd en ondersteuning. Onderwysers het nogtans 'n nuwe
en praktiese visie ontwikkel van wiskunde-onderrigstrategieë wat fokus op leerders se
betrokkenheid by die ondersoek en oplossing van probleme wat vir hulle uitdagend en
nie-roetine was. Onderwysers het daadwerklike pogings aangewend om hul nuwe
rolle as mediators te internaliseer en te aanvaar, en om meer soepel onderrigstyle te
ontwikkel. Hulle het geleer om met hulleerders te kommunikeer, om leerders se
verduidelikings en voorstelle te aanvaar, om logiese argumentering aan te moedig en
om foute en wankonsepte konstruktief te benader.
Leerders se resultate in die voor- en na-toetse dui op swak vermoë om wiskundige
modelle te bou veral wanneer hulle simbole moes gebruik, maar wys beduidende
vordering in leerders se denke, wat gemanifesteer het in die verskeidenheid en
oorspronklikheid van hul strategieë, hul sistematiese werk en hul voortgesette pogings
om algebraprobleme op te los. Leerders het ook positiewe instellings teenoor die
doen van wiskunde ontwikkel; dit is getoon deur hul trots en tevredenheid wanneer
hulle self nie-roetine take opgelos het.
Onderwysers se kommentaar openbaar dat hulle onder druk werk om 'n oorlaaide
wiskundekurrikulum af te handel en dat hulle min ondersteuning van onderwyshoofde
kry. Hulle sê ook dat wiskunde deur die breë gemeenskap as 'n moeilike vak beskou
word. Vir baie leerders is wiskunde 'n hekwagter wat toegang tot verdere onderwys
en opleiding beheer; om in wiskunde te faal beteken om op skool te faal en om in die
lewe te faal. Leerders se negatiewe instellings teenoor wiskunde was hoofsaaklik as
gevolg van hul herhaalde mislukkings in skoolwiskunde maar ook as gevolg van
sommige wiskunde-onderwysers wat hulleerders intimideer en ontmoedig.
Beide onderwyshoofde en onderwysers behoort pogings aan te wend om te besin oor
'n geskikte wiskundekurrikulum en alternatiewe onderrigstrategieë om leerders meer
doeltreffend voor te berei om aan nuwe sosiale en tegnologiese eise te voldoen.
|
306 |
Evaluating the effectiveness of Advanced Programme Mathematics in preparing learners for university mathematicsDu Plessis, Hester 03 1900 (has links)
ENGLISH ABSTRACT: In today’s hi-tech global economy the fields of science, technology and engineering are becoming increasingly and undeniably central to economic growth and competitiveness, and will provide many future jobs. Qualifications in Mathematics are crucial gateways to further education and will provide access to the Science, Technology, Engineering and Mathematics (STEM) industries.
This study focuses on the optional course in Mathematics, called Advanced Programme Mathematics (APM), which is offered and assessed by the Independent Examination Board in the final three years of high school in South Africa.
At present, the South African school system does not adequately prepare students for the transition from school to university Mathematics, and APM has been designed to address this gap. The research question set by this study is: To what extent does the APM course succeed in preparing learners for the rigour of first-year Mathematics in the STEM university programmes?
The sample group of 439 students was selected from the 2013 cohort of first-year Mathematics students at Stellenbosch University. First, an analysis of the relevant curricula was undertaken, and then an empirical investigation was done to determine the differences in performance between first and second semester examinations of first-year university Mathematics students who took APM, and those who did not. This was followed by an investigation by means of a questionnaire into the perceptions of students on how effective APM was in easing the transition from school to university Mathematics. The research was designed according to the Framework for an Integrated Methodology (FraIM) of Plowright (2011).
From an extensive international literature study, it appears that APM is definitely a predictor of post-secondary success. Since no formal research has been recorded to support this claim, this study aims to provide a sound answer to whether APM is advantageous. The effect size results of this study show that APM marks of students explain 68% of the achievement in first-semester university Mathematics when combined with NSC Mathematics marks in a general regression model. There is a significant difference between the marks of students who took APM and those who did not in first-semester university Mathematics, specifically across the National Senior Certificate (NSC) Mathematics mark categories of 80-100%.
APM course-taking leads to confidence in Mathematics, which combined with good domain knowledge of calculus, ease the transition from school to university Mathematics.
The study recommends that not only students who intend pursuing a career in the STEM industries should take the APM course, but also those who intend to apply for admission to any other tertiary studies, as the cognitive and other skills provided by APM will give them the required edge to perform well in higher education. Schools are called upon to provide access to APM for mathematically gifted students, and teachers and guidance counsellors should encourage learners to enrol for AMP. This will enable them to share in the manifold academic and personal benefits accruing from the course, and to help alleviate the critical shortage of graduates in careers requiring a strong Mathematics background in South Africa. / AFRIKAANSE OPSOMMING: In die hoë-tegnologie-wêreldekonomie van vandag word die gebiede van wetenskap, tegnologie en ingenieurswese toenemend en onmiskenbaar die kern van ekonomiese groei en mededingendheid wat in die toekoms baie werkgeleenthede sal bied. Kwalifikasies in Wiskunde open beslis baie deure na verdere opleiding en verleen toegang tot die Wetenskap-, Tegnologie- Ingenieurswese- en Wiskunde-industrieë.
Hierdie studie fokus op die opsionele kursus in Wiskunde, genaamd Gevorderde Program Wiskunde (GPW), wat deur die Onafhanklike Eksamenraad aangebied en geassesseer word in die laaste drie jaar van hoërskoolonderrig in Suid-Afrika.
Tans berei die Suid-Afrikaanse skoolstelsel nie studente genoegsaam voor vir die oorgang van skool- na universiteitswiskunde nie en GPW is ontwerp om hierdie gaping te oorbrug. Die navorsingsvraag wat hierdie studie stel, is: In watter mate slaag die GPW-kursus daarin om leerders voor te berei vir die streng vereistes van eerstejaar-Wiskunde in die Wetenskap-, Tegnologie- Ingenieurswese- en Wiskunde-universiteitsprogramme?
Die toetsgroep van 436 studente is gekies uit die 2013-groep eerstejaar-Wiskundestudente aan Stellenbosch Universiteit. Aanvanklik is ᾽n analise van die relevante leerplanne onderneem, waarna ᾽n empiriese ondersoek gedoen is om die verskille in prestasie in die eerste en tweede semester eksamens vas te stel tussen eerstejaar-Wiskundestudente op universiteit wat wel GPW geneem het en diegene wat dit nie geneem het nie. Dit is gevolg deur ᾽n ondersoek deur middel van ᾽n vraelys na die persepsies van studente oor hoe effektief GPW was om die oorgang van skool- na universiteitswiskunde te vergemaklik. Die navorsing is ontwerp op grond van ‘n model vir ‘n geïntegreerde metodologie van Plowright (2011).
Dit blyk uit ᾽n uitgebreide studie van internasionale literatuur dat GPW definitief ᾽n voorspeller van post-sekondêre sukses is. Aangesien geen formele navorsing om hierdie aanspraak te ondersteun nog op skrif gestel is nie, poog hierdie studie om ᾽n deurdagte antwoord te verskaf op die vraag of GPW wel tot voordeel van studente is. Die effek grootte resultate van hierdie studie dui aan dat die GPW-punte van studente 68% van prestasie in Wiskunde in die eerste semester op universiteit verduidelik as dit in ᾽n algemene regressiemodel met die Nasionale Senior Sertifikaat (NSS) punte gekombineer word. Daar is ᾽n beduidende verskil tussen die Wiskundepunte van studente wat GPW geneem het en diegene wat dit nie geneem het nie in die eerste semester op universiteit, veral in die NSS-Wiskundepuntekategorieë van 80-100%.
Om die GPW-kursus te neem, lei tot selfvertroue in Wiskunde, wat saam met ᾽n goeie kennis van die Differensiaalrekening-domein, die oorgang van Wiskunde vanaf skoolvlak na universiteitsvlak vergemaklik.
Op grond van die studie beveel die navorser aan dat nie slegs studente wat ᾽n loopbaan in Wetenskap-, Tegnologie- Ingenieurswese- en Wiskunde-rigtings wil volg, die GPW-kursus behoort te volg nie, maar ook diegene wat vir toelating tot enige ander tersiêre studie wil aansoek doen, aangesien die kognitiewe en ander vaardighede wat GPW ontwikkel, hulle die nodige voorsprong sal bied om goed te vaar in verdere studie. Skole word aangemoedig om toegang tot GPW aan wiskundig begaafde leerlinge te verskaf en onderwysers en loopbaanraadgewers behoort leerlinge aan te moedig om vir GPW in te skryf. Sodoende kan hulle deel in die vele akademiese en persoonlike voordele wat die kursus bied, en help om die kritieke tekort aan gegradueerdes in die studierigtings waar ‘n sterk Wiskunde agtergrond ‘n vereiste is, te help verlig.
|
307 |
The relationship between motivational beliefs and mathematics achievement among Chinese students in Hong KongLeung, Siu-on, Terence January 1998 (has links)
published_or_final_version / abstract / toc / Educational Psychology / Master / Master of Social Sciences
|
308 |
Development of addition strategies in young childrenKoong, May-kay, Maggie., 孔美琪. January 1990 (has links)
published_or_final_version / Education / Master / Master of Education
|
309 |
The roles of definition and examples in the learning of mathematical conceptsTsang, Yok-sing., 曾鈺成. January 1983 (has links)
published_or_final_version / Education / Master / Master of Education
|
310 |
The explication of a model of mathematics learning: in the context of the IEA mathematics study (1980 HongKong)Li, Che-cheung, Philip., 李志昌. January 1986 (has links)
published_or_final_version / Education / Master / Master of Education
|
Page generated in 0.1197 seconds