• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From confusion noise to active learning : playing on label availability in linear classification problems / Du bruit de confusion à l’apprentissage actif : jouer sur la disponibilité des étiquettes dans les problèmes de classification linéaire

Louche, Ugo 04 July 2016 (has links)
Les travaux présentés dans cette thèse relèvent de l'étude des méthodes de classification linéaires, c'est à dire l'étude de méthodes ayant pour but la catégorisation de données en différents groupes à partir d'un jeu d'exemples, préalablement étiquetés, disponible en amont et appelés ensemble d'apprentissage. En pratique, l'acquisition d'un tel ensemble d'apprentissage peut être difficile et/ou couteux, la catégorisation d'un exemple étant de fait plus ardu que l'obtention de dudit exemple. Cette disparité entre la disponibilité des données et notre capacité à constituer un ensemble d'apprentissage étiqueté a été un des problèmes centraux de l'apprentissage automatique et ce manuscrit s’intéresse à deux solutions usuellement considérées pour contourner ce problème : l'apprentissage en présence de données bruitées et l'apprentissage actif. / The works presented in this thesis fall within the general framework of linear classification, that is the problem of categorizing data into two or more classes based on on a training set of labelled data. In practice though acquiring labeled examples might prove challenging and/or costly as data are inherently easier to obtain than to label. Dealing with label scarceness have been a motivational goal in the machine learning literature and this work discuss two settings related to this problem: learning in the presence of noise and active learning.

Page generated in 0.0919 seconds