Spelling suggestions: "subject:"1ieasurement disturbance"" "subject:"1ieasurement isturbance""
1 |
Design and Control of A Ropeless Elevator with Linear Switched Reluctance Motor Drive Actuation SystemsLim, Hong Sun 03 May 2007 (has links)
Linear switched reluctance motor (LSRM) drives are investigated and proved as an alternative actuator for vertical linear transportation applications such as a linear elevator. A one-tenth scaled prototype elevator focused on a home elevator with LSRMs is designed and extensive experimental correlation is presented for the first time.
The proposed LSRM has twin stators and a set of translator poles without back-iron. The translators are placed between the two stators. The design procedures and features of the LSRM and the prototype elevator are described. The designed LSRM is validated through a finite element analysis (FEA) and experimental measurements. Furthermore, a control strategy for the prototype elevator is introduced consisting of four control loops, viz., current, force, velocity, and position feedback control loops. For force control, a novel force distribution function (FDF) is proposed and compared with conventional FDFs. A trapezoidal velocity profile is introduced to control vertical travel position smoothly during the elevator's ascent, descent, and halt operations. Conventional proportional plus integral (PI) controller is used for the current and velocity control loops and their designs are described. The proposed control strategy is dynamically simulated and experimentally correlated. Analytical and experimental results of this research prove that LSRMs are one of the strong candidates for ropeless linear elevator applications.
However, the proposed FDF is assuming that the feedback current signals are ideal currents indicating actual phase currents without any measurement disturbances mainly arising from sensor noise, DC-link voltage ripple, measurement offset, and variations in the plant model. Meanwhile, real control systems in industry have measurement disturbance problems. Phase current corrupted by measurement disturbances increases torque or force ripple, acoustic noise and EMI. Therefore, this dissertation also presents a novel current control method to suppress measurement disturbances without extra hardware.
The controller is based on an extended state observer (ESO) and a nonlinear P controller (NLP). The proposed method does not require an accurate mathematical model of system and can be implemented on a low-cost DSP controller. The proposed ESO is exploited to estimate the measurement disturbances on measured phase currents, and the proposed NLP compensates for the measurement disturbances estimated by the ESO. The performance of the proposed current control is validated through extensive dynamic simulations and experiments. Moreover, this rejection of measurement disturbances results in a reduction of force ripple and acoustic noise. Due to superior and robust current control performance, it is believed that the proposed method can be successfully applied into other motor drive systems to suppress measurement disturbances with the same promising results without extra hardware. / Ph. D.
|
2 |
Conceptual understanding of quantum mechanics : an investigation into physics students' depictions of the basic concepts of quantum mechanicsEjigu, Mengesha Ayene 07 1900 (has links)
Not only is Quantum Mechanics (QM) conceptually rich, it is also a theory that physics students have found abstract and technically formidable. Nevertheless, compared to other classical topics of physics, university students’ understanding of QM has received minimal attention in the physics education literature. The principal purpose of this study was to characterize the variation in the ways that undergraduate physics students depict the basic concepts of QM and to extrapolate the results to scaffold possible changes to instructional practices at the university that provided the context for the study. In so doing, an adaptation of a developmental phenomenographic perspective was chosen. Empirically, the study was approached through in-depth interviews with 35 physics students from two Ethiopian governmental universities after they had been exposed to the traditional QM course for one-third of a semester. Interview responses were analyzed using phenomenographic approach where a picture of students’ depictions was established for each quantum concept by expounding the given responses. For each basic quantum concept addressed, the structure of the description categories was separately constructed, and overall, it was found that naive, quasi-classical ontology and/or variants of classical ways of visualization are dominant in students’ responses. For example, it was found that students’ depictions of the photon concept could be described with three distinct categories of description, which are (a) classical intuitive description, (b) mixed model description and (c) quasi-quantum model description. Similarly, the findings revealed that it is possible to establish three qualitatively different categories of description to picture students’ depictions of matter waves, namely, (a) classical and trajectory-based description, (b) an intricate blend of classical and quantum description and (c) incipient quantum model description. Likewise, it was found that students’ depictions of uncertainty principle can be described as: (a) uncertainty as classical ignorance, (b) uncertainty as measurement disturbance and (c) uncertainty as a quasi-quantum principle.
With regard to learning QM, the categories of description made clear several issues: most students did not have enough knowledge to depict the basic concepts of QM properly; they were influenced by the perspective of classical physics and their perceptions in making explanations about QM; and they also applied mixed ideas, one based on their classical model and the other from newly introduced QM. These results are also supported by the findings of previous studies in similar domains. Findings from the study were used to guide the design of multiple representations-based instructions and interactive learning tutorials on the conceptual aspects of QM that has been shown to address specific difficulties identified in the study. Theoretical and practical implications of the study, as well as potential future considerations are drawn. / Mathematics, Science and Technology Education / D. Phil. (Mathematics, Science and Technology Education)
|
3 |
Conceptual understanding of quantum mechanics : an investigation into physics students' depictions of the basic concepts of quantum mechanicsEjigu, Mengesha Ayene 07 1900 (has links)
Not only is Quantum Mechanics (QM) conceptually rich, it is also a theory that physics students have found abstract and technically formidable. Nevertheless, compared to other classical topics of physics, university students’ understanding of QM has received minimal attention in the physics education literature. The principal purpose of this study was to characterize the variation in the ways that undergraduate physics students depict the basic concepts of QM and to extrapolate the results to scaffold possible changes to instructional practices at the university that provided the context for the study. In so doing, an adaptation of a developmental phenomenographic perspective was chosen. Empirically, the study was approached through in-depth interviews with 35 physics students from two Ethiopian governmental universities after they had been exposed to the traditional QM course for one-third of a semester. Interview responses were analyzed using phenomenographic approach where a picture of students’ depictions was established for each quantum concept by expounding the given responses. For each basic quantum concept addressed, the structure of the description categories was separately constructed, and overall, it was found that naive, quasi-classical ontology and/or variants of classical ways of visualization are dominant in students’ responses. For example, it was found that students’ depictions of the photon concept could be described with three distinct categories of description, which are (a) classical intuitive description, (b) mixed model description and (c) quasi-quantum model description. Similarly, the findings revealed that it is possible to establish three qualitatively different categories of description to picture students’ depictions of matter waves, namely, (a) classical and trajectory-based description, (b) an intricate blend of classical and quantum description and (c) incipient quantum model description. Likewise, it was found that students’ depictions of uncertainty principle can be described as: (a) uncertainty as classical ignorance, (b) uncertainty as measurement disturbance and (c) uncertainty as a quasi-quantum principle.
With regard to learning QM, the categories of description made clear several issues: most students did not have enough knowledge to depict the basic concepts of QM properly; they were influenced by the perspective of classical physics and their perceptions in making explanations about QM; and they also applied mixed ideas, one based on their classical model and the other from newly introduced QM. These results are also supported by the findings of previous studies in similar domains. Findings from the study were used to guide the design of multiple representations-based instructions and interactive learning tutorials on the conceptual aspects of QM that has been shown to address specific difficulties identified in the study. Theoretical and practical implications of the study, as well as potential future considerations are drawn. / Mathematics, Science and Technology Education / D. Phil. (Mathematics, Science and Technology Education)
|
Page generated in 0.0976 seconds