• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-Inspired Disturbance Observer Design and Disturbance Observer-Based Control/estimation

Chen, Ying-Chun 15 August 2023 (has links)
This dissertation consists of two topics: (1) structure-inspired disturbance observer design and (2) disturbance observer-based control/estimation. The disturbance is defined as the discrepancy between a model and the system the model represents. A disturbance observer is an algorithm that generates an estimate of the disturbance. The first topic illustrates a disturbance observer that provides a big class of nonlinear systems with a large basin of attraction, even ensuring global convergence. Such robustness is achieved by leveraging particular system nonlinearities in the observer design. The second topic discusses the usage of disturbance estimates to counteract or capture the effects of disturbances to recover the nominal controller/estimator performance. The main research results are theorems concerning stability analysis of the disturbance observer and the disturbance observer-based systems, whose practical aspects are supported by three application examples---a fixed-wing aircraft, an underwater vehicle, and a Furuta pendulum. / Doctor of Philosophy / This dissertation consists of two topics: (1) structure-inspired disturbance observer design and (2) disturbance observer-based control/estimation. Disturbances are the unknown signals entering the system; an external force, for example, such as the additional lift force due to turbulence surrounding an aircraft is a disturbance. A disturbance observer is an algorithm that estimates the mathematical value of disturbances. The first topic illustrates a disturbance observer whose convergence is guaranteed regardless of the initial condition. Such robustness is achieved by leveraging the system's special properties in the observer design. The second topic discusses the usage of disturbance observers to recover the nominal controller/estimator performance. Control is a study of how make systems behave ideally by properly designing the inputs, while estimation is about how to infer quantities that cannot be directly measured using the measurements that really are available; the solutions are correspondingly called controller and estimator. Disturbance estimates can be exploited by existing controllers and estimators as extra information to counteract or capture the effects of disturbances. The main research results are theorems about the conditions under which these algorithms perform as desired. Practical aspects are supported by three application examples---a fixed-wing aircraft, an underwater vehicle, and a Furuta pendulum.
2

Pressure-based Impedance Control of a Pneumatic Actuator

Mohorcic, John Francis 04 June 2020 (has links)
No description available.
3

Road Surface Condition Detection and Identification and Vehicle Anti-Skid Control

Ye, Maosheng January 2008 (has links)
No description available.
4

Design and Control of A Ropeless Elevator with Linear Switched Reluctance Motor Drive Actuation Systems

Lim, Hong Sun 03 May 2007 (has links)
Linear switched reluctance motor (LSRM) drives are investigated and proved as an alternative actuator for vertical linear transportation applications such as a linear elevator. A one-tenth scaled prototype elevator focused on a home elevator with LSRMs is designed and extensive experimental correlation is presented for the first time. The proposed LSRM has twin stators and a set of translator poles without back-iron. The translators are placed between the two stators. The design procedures and features of the LSRM and the prototype elevator are described. The designed LSRM is validated through a finite element analysis (FEA) and experimental measurements. Furthermore, a control strategy for the prototype elevator is introduced consisting of four control loops, viz., current, force, velocity, and position feedback control loops. For force control, a novel force distribution function (FDF) is proposed and compared with conventional FDFs. A trapezoidal velocity profile is introduced to control vertical travel position smoothly during the elevator's ascent, descent, and halt operations. Conventional proportional plus integral (PI) controller is used for the current and velocity control loops and their designs are described. The proposed control strategy is dynamically simulated and experimentally correlated. Analytical and experimental results of this research prove that LSRMs are one of the strong candidates for ropeless linear elevator applications. However, the proposed FDF is assuming that the feedback current signals are ideal currents indicating actual phase currents without any measurement disturbances mainly arising from sensor noise, DC-link voltage ripple, measurement offset, and variations in the plant model. Meanwhile, real control systems in industry have measurement disturbance problems. Phase current corrupted by measurement disturbances increases torque or force ripple, acoustic noise and EMI. Therefore, this dissertation also presents a novel current control method to suppress measurement disturbances without extra hardware. The controller is based on an extended state observer (ESO) and a nonlinear P controller (NLP). The proposed method does not require an accurate mathematical model of system and can be implemented on a low-cost DSP controller. The proposed ESO is exploited to estimate the measurement disturbances on measured phase currents, and the proposed NLP compensates for the measurement disturbances estimated by the ESO. The performance of the proposed current control is validated through extensive dynamic simulations and experiments. Moreover, this rejection of measurement disturbances results in a reduction of force ripple and acoustic noise. Due to superior and robust current control performance, it is believed that the proposed method can be successfully applied into other motor drive systems to suppress measurement disturbances with the same promising results without extra hardware. / Ph. D.
5

Disturbance Rejection Control for The Green Bank Telescope

Ranka, Trupti 01 June 2016 (has links)
No description available.
6

Robust control for manipulation inside a scanning electron microscope / Commande robuste pour la manipulation in situ microscope électronique à balayage -Robust control for manipulation inside a scanning electron microscope

Gaudenzi de faria, Marcelo 17 February 2016 (has links)
Cette thèse étudie le problème de nano-positionnement à l'intérieur d'un microscope électronique à balayage (MEB). Pour obtenir des informations de position avec rapidité et précision, une installation dédiée composée d’un vibromètre placé à l'intérieur du MEB a été mise en œuvre. Cette approche diffère de méthodes basées sur le traitement d'images, car elle permet de saisir des données en temps réel sur le comportement dynamique des structures étudiées. Dans une première étude, les perturbations mécaniques agissant à l'intérieur de la chambre à vide du microscope ont été caractérisées et leurs sources ont été identifiées. Cela a démontré comment les vibrations mécaniques externes et les bruits acoustiques peuvent influer largement sur les composants à l'intérieur du MEB par couplage mécanique, limitant ainsi la précision des manipulateurs. Dans un deuxième temps, une micro-pince du commerce a été étudiée. Une différence entre ses comportements dans l'air et dans le vide a été mise en évidence, ce qui a permis d'obtenir deux modèles dynamiques pour cet organe terminal, un pour chaque environnement. Deux lois de commande ont été proposées (commande H-infini et commande basée sur un observateur d'état étendu), afin d'obtenir en temps réel un positionnement précis dans le vide, et d'atténuer les effets des perturbations mécaniques externes. Les résultats ont été validés en simulation et expérimentalement. / This work studies the nano-positioning problem inside the scanning electron microscope (SEM). To acquire fast and accurate positional information, a dedicated setup was implemented consisting of a vibrometer placed inside the SEM. This approach differs from methods based on image processing, as it allows to capture real-time data on the dynamic behavior of structures. In a first study, the mechanical disturbances acting inside the microscope’s vacuum chamber were characterized and its sources were identified. This demonstrated how external mechanical vibrations and acoustic noises can largely influence the components inside the SEM through mechanical coupling, limiting the effective positioning precision of manipulators. Next, a commercial micro-gripper was studied, both in air and in vacuum, and the differences between its response were highlighted. This allowed to obtain two dynamic models for this end-effector, one for each environment. Two control laws were proposed (H-infinity control and Extended State Observer based control) for the system, to obtain a real-time, precise positioning in the vacuum environment and to attenuate the effects of the external mechanical disturbances. Results were demonstrated through simulation and experimental validation.

Page generated in 0.0996 seconds