• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Integration of a Novel Robotic Leg Mechanism for Dynamic Locomotion at High-Speeds

Kamidi, Vinaykarthik Reddy 29 January 2018 (has links)
Existing state-of-the-art legged robots often require complex mechanisms with multi-level controllers and computationally expensive algorithms. Part of this is owed to the multiple degrees of freedom (DOFs) these intricate mechanisms possess and the other is a result of the complex nature of dynamic legged locomotion. The underlying dynamics of this class of non-linear systems must be addressed in order to develop systems that perform natural human/animal-like locomotion. However, there are no stringent rules for the number of DOFs in a system; this is merely a matter of the locomotion requirements of the system. In general, most systems designed for dynamic locomotion consist of multiple actuators per leg to address the balance and locomotion tasks simultaneously. In contrast, this research hypothesizes the decoupling of locomotion and balance by omitting the DOFs whose primary purpose is dynamic disturbance rejection to enable a far simplified mechanical design for the legged system. This thesis presents a novel single DOF mechanism that is topologically arranged to execute a trajectory conducive to dynamic locomotive gaits. To simplify the problem of dynamic balancing, the mechanism is designed to be utilized in a quadrupedal platform in the future. The preliminary design, based upon heuristic link lengths, is presented and subjected to kinematic analysis to evaluate the resulting trajectory. To improve the result and to analyze the effect of key link lengths, sensitivity analysis is then performed. Further, a reference trajectory is established and a parametric optimization over the design space is performed to drive the system to an optimal configuration. The evolved design is identified as the Bio-Inspired One-DOF Leg for Trotting (BOLT). The dynamics of this closed kinematic chain mechanism is then simplified, resulting in a minimal order state space representation. A prototype of the robotic leg was integrated and mounted on a treadmill rig to perform various experiments. Finally, open loop running is implemented on the integrated prototype demonstrating the locomotive performance of BOLT. / MS / Existing state-of-the-art legged robots often require complex mechanisms with multi-level controllers and computationally expensive algorithms. Part of this is owed to the multiple degrees of freedom (DOFs) these intricate mechanisms possess and the other is a result of the complex nature of dynamic legged locomotion. The underlying dynamics of this class of non-linear systems must be addressed in order to develop systems that perform natural human/animal-like locomotion. However, the number of active DOF is merely a designers choice. To simplify the problem at both levels: design and controls of dynamic locomotion, we developed a novel mechanism that incorporates the benefits of higher DOF legs while accommodating the simplicity of single DOF leg. The preliminary design of the mechanism was designed with parameters (lengths of the femur,tibia) that were directly derived from a domestic dog. Synthesis of the mechanism suggested that the design was not suitable for an intended running-trot gait observed in biological counterparts. However, to gain a deeper understanding of the mechanism, it was necessary to perform a sensitivity analysis, as a result we arrived at a mechanism whose performance was better than the initial but still not satisfactory.With the insight gained through the analysis and an ideal gait design exercise, then an optimization on the design space was performed with carefully tuned bounds. The final result is a novel mechanism identified as Biologically inspired One DOF Leg for Trotting (BOLT) that is topologically arranged to execute a running-trot gait. Finally, the design choice presented with a challenge that has not been actively addressed. The dynamics of the mechanism can not be modeled using traditional methods due to presence of constraints that characterize the closed loops of the mechanism. We present an adaption of the Singularly perturbed dynamic model for systems that are hybrid in nature. The resulting dynamics are simplified, resulting in a minimal order state space representation, which is more amenable to model based control development in future. A prototype of the robotic leg was integrated and mounted on a treadmill rig to perform various experiments.Finally, open loop running is implemented on the integrated prototype demonstrating the locomotive performance of BOLT.
2

Intramolecular hydroamination of aminoalkenes with group 2 precatalysts : mechanistic insights and ligand design

Arrowsmith, Merle January 2011 (has links)
Long relegated to the background by the pre-eminence of magnesium-based, stoichiometric Grignard reagents, a distinct chemistry of the heavier alkaline earth metals, calcium, strontium and barium, is only now starting to emerge. As similarities have been drawn between the large, electropositive, redox-inert and d0 alkaline earth Ae2+ dications and the Ln3+ cations of the lanthanide series, a growing group 2-mediated catalytic chemistry has developed over the last decade, including polymerisation reactions, heterofunctionalisation reactions of multiple bonds and some rare examples of dehydrocoupling reactions. Among these catalytic reactions the magnesium- and calcium-catalysed intramolecular hydroamination of aminoalkenes has attracted particular interest. Mechanistic studies have demonstrated many parallels with the lanthanide-mediated catalytic cycle based upon successive σ-bond metathesis and insertion steps. In the first part of this thesis, further investigations into the hydroamination/cyclisation reaction have demonstrated the prominent role of the charge density of the catalytic group 2 cation (M = Mg, Ca, Sr, Ba), the beneficial influence of stabilising spectator ligands, and the importance of the choice of the reactive co-ligand for efficient catalyst initiation. Kinetic analyses of reactions monitored by NMR spectroscopy have given new insight into activation energies, entropic effects, substrate and product inhibition, and kinetic isotope effects, leading to a review of the previously suggested lanthanide-mimetic mechanism. In a second part, this study seeks to address two of the main challenges posed by the intramolecular hydroamination reaction in particular, and heavier alkaline earth-catalysed reactions in general: (i) The need to design new monoanionic spectator ligands capable of stabilising heteroleptic heavier alkaline earth complexes and preventing deleterious Schlenk-type ligand redistribution processes in solution; (ii) The stabilisation of highly reactive heteroleptic group 2 alkyl functionalities for fast, irreversible catalyst initiation and novel reactivity.
3

Design Of A Compliant Mechanism To Amplify The Stroke Of A Piezoelectric Stack Actuator

Tamer, Keskin 01 February 2013 (has links) (PDF)
Main objective of this study is to design a compliant mechanism with high frequency and high mechanical amplification ratio to be used for amplifying the stroke of a piezostack actuator. In this thesis, first of all, related literature is investigated and then alternative conceptual designs are established utilizing the mechanisms found in literature survey. Once best conceptual design is selected, detailed design of this mechanism is done. For detailed design of the compliant mechanism, topology optimization method is used in this study. To design the mechanism, first a design domain is defined and then a finite element model of the design domain is prepared to be used in topology optimization runs. After running the topology optimization model by using TOSCA with ANSYS, results are imported to ANSYS, where final performance of the mechanism design is checked. After finalizing design of the mechanism, it is produced and its performance is tested through experiments.
4

Design Of A Compliant Mechanism To Amplify The Stroke Of A Piezoelectric Stack Actuator

Keskin, Tamer 01 February 2013 (has links) (PDF)
Main objective of this study is to design a compliant mechanism with high frequency and high mechanical amplification ratio to be used for amplifying the stroke of a piezostack actuator. In this thesis, first of all, related literature is investigated and then alternative conceptual designs are established utilizing the mechanisms found in literature survey. Once best conceptual design is selected, detailed design of this mechanism is done. For detailed design of the compliant mechanism, topology optimization method is used in this study. To design the mechanism, first a design domain is defined and then a finite element model of the design domain is prepared to be used in topology optimization runs. After running the topology optimization model by using TOSCA with ANSYS, results are imported to ANSYS, where final performance of the mechanism design is checked. After finalizing design of the mechanism, it is produced and its performance is tested through experiments.
5

Development And Design Optimization Of Laminated Composite Structures Using Failure Mechanism Based Failure Criterion

Naik, G Narayana 12 1900 (has links)
In recent years, use of composites is increasing in most fields of engineering such as aerospace, automotive, civil construction, marine, prosthetics, etc., because of its light weight, very high specific strength and stiffness, corrosion resistance, high thermal resistance etc. It can be seen that the specific strength of fibers are many orders more compared to metals. Thus, laminated fiber reinforced plastics have emerged to be attractive materials for many engineering applications. Though the uses of composites are enormous, there is always an element of fuzziness in the design of composites. Composite structures are required to be designed to resist high stresses. For this, one requires a reliable failure criterion. The anisotropic behaviour of composites makes it very difficult to formulate failure criteria and experimentally verify it, which require one to perform necessary bi-axial tests and plot the failure envelopes. Failure criteria are usually based on certain assumption, which are some times questionable. This is because, the failure process in composites is quite complex. The failure in a composite is normally based on initiating failure mechanisms such as fiber breaks, fiber compressive failure, matrix cracks, matrix crushing, delamination, disbonds or a combination of these. The initiating failure mechanism is the one, which is/are responsible for initiating failure in a laminated composites. Initiating failure mechanisms are generally dependant on the type of loading, geometry, material properties, condition of manufacture, boundary conditions, weather conditions etc. Since, composite materials exhibit directional properties, their applications and failure conditions should be properly examined and in addition to this, robust computational tools have to be exploited for the design of structural components for efficient utilisation of these materials. Design of structural components requires reliable failure criteria for the safe design of the components. Several failure criteria are available for the design of composite laminates. None of the available anisotropic strength criteria represents observed results sufficiently accurate to be employed confidently by itself in design. Most of the failure criteria are validated based on the available uniaxial test data, whereas, in practical situations, laminates are subjected to at least biaxial states of stresses. Since, the generation of biaxial test data are very difficult and time consuming to obtain, it is indeed a necessity to develop computational tools for modelling the biaxial behavior of the composite laminates. Understanding of the initiating failure mechanisms and the development of reliable failure criteria is an essential prerequisite for effective utilization of composite materials. Most of the failure criteria, considers the uniaxial test data with constant shear stress to develop failure envelopes, but in reality, structures are subjected to biaxial normal stresses as well as shear stresses. Hence, one can develop different failure envelopes depending upon the percentage of the shear stress content. As mentioned earlier, safe design of the composite structural components require reliable failure criterion. Currently two broad approaches, namely, (1) Damage Tolerance Based Design and (2)Failure Criteria Based Design are in use for the design of laminated structures in aerospace industry. Both approaches have some limitations. The damage tolerance based design suffers from a lack of proper definition of damage and the inability of analytical tools to handle realistic damage. The failure criteria based design, although relatively, more attractive in view of the simplicity, it forces the designer to use unverified design points in stress space, resulting in unpredictable failure conditions. Generally, failure envelopes are constructed using 4 or 5 experimental constants. In this type of approach, small experimental errors in these constants lead to large shift in the failure boundaries raising doubts about the reliability of the boundary in some segments. Further, they contain segments which have no experimental support and so can lead to either conservative or nonconservative designs. Conservative design leads to extra weight, a situation not acceptable in aerospace industry. Whereas, a nonconservative design, is obviously prohibitive, as it implies failure. Hence, both the damage tolerance based design and failure criteria based design have limitations. A new method, which combines the advantages of both the approaches is desirable. This issue is also thoroughly debated in many international conference on composites. Several pioneers in the composite industry indicated the need for further research work in the development of reliable failure criteria. Hence, this is motivated to carry out research work for the development of new failure criterion for the design of composite structures. Several experts meetings held world wide towards the assessment of existing failure theories and computer codes for the design of composite structures. One such meeting is the experts meeting held at United Kingdom in 1991.This meeting held at St. Albans(UK) on ’Failure of Polymeric Composites and Structures: Mechanisms and Criteria for the Prediction of Performance’, in 1991 by UK Science & Engineering Council and UK Institute of Mechanical Engineers. After thorough deliberations it was concluded that 1. There is no universal definition of failure of composites. 2. There is little or lack of faith in the failure criteria that are in current use and 3. There is a need to carry out World Wide Failure Exercise(WWFE) Based on the experts suggestions, Hinton and Soden initiated the WWFE in consultation with Prof.Bryan Harris (Editor, Journal of Composite Science and Tech-nology)to have a program to get comparative assessment of existing failure criteria and codes with following aims 1. Establish the current level of maturity of theories for predicting the failure response of fiber reinforced plastic(FRP)laminates. 2. Closing the knowledge gap between theoreticians and design practitioners in this field. 3. Stimulating the composites’ community into providing design engineers with more robust and accurate failure prediction methods, and the confidence to use them. The organisers invited pioneers in the composite industry for the program of WWFE. Among the pioneer in the composite industry Professor Hashin declined to participate in the program and had written a letter to the organisers saying that, My only work in this subject relates to failure criteria of unidirectional fiber composites, not to laminates. I do not believe that even the most complete information about failure of single plies is sufficient to predict the failure of a laminate, consisting of such plies. A laminate is a structure which undergoes a complex damage process (mostly of cracking) until it finally fails. The analysis of such a process is a prerequisite for failure analysis. ”While significant advances have been made in this direction we have not yet arrived at the practical goal of failure prediction”. Another important conference held in France in 1999, Composites for the next Millennium (Proceedingof Symposium in honor of S.W.Tsaion his 70th Birth Day Torus, France, July 2-3, 1999, pp.19.) also concludedon similar line to the meeting held at UK in 1991. Paul A Lagace and S. Mark Spearing, have pointed out that, by referring to the article on ’Predicting Failure in Composite Laminates: the background to the exercise’, by M.J.Hinton & P.D.Soden, Composites Science and Technology, Vol.58, No.7(1998), pp.1005. ”After Over thirty years of work ’The’ composite failure criterion is still an elusive entity”. Numerous researchers have produced dozens of approaches. Hundreds of papers, manuscripts and reports were written and presentations made to address the latest thoughts, add data to accumulated knowledge bases and continue the scholarly debate. Thus, the out come of these experts meeting, is that, there is a need to develop new failure theories and due to complexities associated with experimentation, especially getting bi-axial data, computational methods are the only viable alternative. Currently, biaxial data on composites is very limited as the biaxial testing of laminates is very difficult and standardization of biaxial data is yet to be done. All these experts comments and suggestions motivated us to carry out research work towards the development of new failure criterion called ’Failure Mechanism Based Failure Criterion’ based on initiating failure mechanisms. The objectives of the thesis are 1. Identification of the failure mechanism based failure criteria for the specific initiating failure mechanism and to assign the specific failure criteria for specific initiating failure mechanism, 2. Use of the ’failure mechanism based design’ method for composite pressurant tanks and to evaluate it, by comparing it with some of the standard ’failure criteria’ based designs from the point of view of overall weight of the pressurant tank, 3. Development of new failure criterion called ’Failure Mechanism Based Failure Criterion’ without shear stress content and the corresponding failure envelope, 4. Development of different failure envelopes with the effect of shear stress depending upon the percentage of shear stress content and 5. Design of composite laminates with the Failure Mechanism Based Failure Criterion using optimization techniques such as Genetic Algorithms(GA) and Vector Evaluated Particle Swarm Optimization(VEPSO) and the comparison of design with other failure criteria such as Tsai-Wu and Maximum Stress failure criteria. The following paragraphs describe about the achievement of these objectives. In chapter 2, a rectangular panel subjected to boundary displacements is used as an example to illustrate the concept of failure mechanism based design. Composite Laminates are generally designed using a failure criteria, based on a set of standard experimental strength values. Failure of composite laminates involves different failure mechanisms depending upon the stress state and so different failure mechanisms become dominant at different points on the failure envelope. Use of a single failure criteria, as is normally done in designing laminates, is unlikely to be satisfactory for all combination of stresses. As an alternate use of a simple failure criteria to identify the dominant failure mechanism and the design of the laminate using appropriate failure mechanism based criteria is suggested in this thesis. A complete 3-D stress analysis has been carried out using a general purpose NISA Finite Element Software. Comparison of results using standard failure criteria such as Maximum Stress, Maximum Strain, Tsai-Wu, Yamada-Sun, Maximum Fiber Strain, Grumman, O’brien, & Lagace, indicate substantial differences in predicting the first ply failure. Results for Failure Load Factors, based on the failure mechanism based approach are included. Identification of the failure mechanism at highly stressed regions and the design of the component, to withstand an artificial defect, representative this failure mechanism, provides a realistic approach to achieve necessary strength without adding unnecessary weight to the structure. It is indicated that the failure mechanism based design approach offers a reliable way of assessing critically stressed regions to eliminate the uncertainties associated with the failure criteria. In chapter 3, the failure mechanism based design approach has been applied to a composite pressurant tanks of upper stages of launch vehicles and propulsion systems of space crafts. The problem is studied using the failure mechanism based design approach, by introducing an artificial matrix crack representative of the initiating failure mechanism in the highly stressed regions and the strain energy release rate (SERR) are calculated. The total SERR value is obtained as 3330.23 J/m2, which is very high compared to the Gc(135 J/m2) value, which means the crack will grow further. The failure load fraction at which the crack has a tendency to grow is estimated to be 0.04054.Results indicates that there are significant differences in the failure load fraction for different failure criteria.Comparison with Failure Mechanism Based Criterion (FMBC) clearly indicates matrix cracks occur at loads much below the design load yet fibers are able to carrythe design load. In chapter 4, a Failure Mechanism Based Failure Criterion(FMBFC)has been proposed for the development of failure envelope for unidirectional composite plies. A representative volume element of the laminate under local loading is micromechanically modelled to predict the experimentally determined strengths and this model is then used to predict points on the failure envelope in the neighborhood of the experimental points. The NISA finite element software has been used to determine the stresses in the representative volume element. From these micro-stresses, the strength of the lamina is predicted. A correction factor is used to match the prediction of the present model with the experimentally determined strength so that, the model can be expected to provide accurate prediction of the strength in the neighborhood of the experimental points. A procedure for the construction of the failure envelope in the stress space has been outlined and the results are compared with the some of the standard and widely used failure criteria in the composite industry. Comparison of results with the Tsai-Wu failure criterion shows that there are significant differences, particularly in the third quadrant, when the ply is under bi-axial compressive loading. Comparison with maximum stress criterion indicates better correlation. The present failure mechanism based failure criterion approach opens a new possibility of constructing reliable failure envelopes for bi-axial loading applications, using the standard uniaxialtest data. In chapter 5, the new failure criterion for laminated composites developed based on initiating failure mechanism as mentioned in chapter 4 for without shear stress condition is extended to obtain the failure envelopes with the shear stress condition. The approach is based on Micromechanical analysis of composites, wherein a representative volume consists of a fiber surrounded by matrix in appropriate volume fraction and modeled using 3-D finite elements to predict the strengths.In this chapter, different failure envelopes are developed by varying shear stress say from 0% of shear strength to 100% of shear strength in steps of 25% of shear strength. Results obtained from this approach are compared with Tsai-Wu and Maximum stress failure criteria. The results show that the predicted strengths match more closely with maximum stress criterion. Hence, it can be concluded that influence of shear stress on the failure of the lamina is of little consequence as far as the prediction of strengths in laminates. In chapter 6, the failure mechanism based failure criterion, developed by the authors is used for the design optimization of the laminates and the percentage savings in total weight of the laminate is presented. The design optimization of composite laminates are performed using Genetic Algorithms. The genetic algorithm is one of the robust tools available for the optimum design of composite laminates. The genetic algorithms employ techniques originated from biology and dependon the application of Darwin’s principle of survival of the fittest. When a population of biological creatures is permitted to evolve over generations, individual characteristics that are beneficial for survival have a tendency to be passed on to future generations, since individuals carrying them get more chances to breed. In biological populations, these characteristics are stored in chromosomal strings. The mechanics of natural genetics is derived from operations that result in arranged yet randomized exchange of genetic information between the chromosomal strings of the reproducing parents and consists of reproduction, cross over, mutation, and inversion of the chromosomal strings. Here, optimization of the weight of the composite laminates for given loading and material properties is considered. The genetic algorithms have the capability of selecting choice of orientation, thickness of single ply, number of plies and stacking sequence of the layers. In this chapter, minimum weight design of composite laminates is presented using the Failure Mechanism Based(FMB), Maximum Stress and Tsai-Wu failure criteria. The objective is to demonstrate the effectiveness of the newly proposed FMB Failure Criterion(FMBFC) in composite design. The FMBFC considers different failure mechanisms such as fiber breaks, matrix cracks, fiber compressive failure, and matrix crushing which are relevant for different loadin gconditions. FMB and Maximum Stress failure criteria predicts byupto 43 percent savings in weight of the laminates compared to Tsai-Wu failure criterion in some quadrants of the failure envelope. The Tsai-Wu failure criterion over predicts the weight of the laminate by up to 86 percent in the third quadrant of the failure envelope compared to FMB and Maximum Stress failure criteria, when the laminate is subjected to biaxial compressive loading. It is found that the FMB and Maximum Stress failure criteria give comparable weight estimates. The FMBFC can be considered for use in the strength design of composite structures. In chapter 7, Particle swarm optimization is used for design optimization of composite laminates. Particle swarm optimization(PSO)is a novel meta-heuristic inspired by the flocking behaviour of birds. The application of PSO to composite design optimization problems has not yet been extensively explored. Composite laminate optimization typically consists in determining the number of layers, stacking sequence and thickness of ply that gives the desired properties. This chapter details the use of Vector Evaluated Particle Swarm Optimization(VEPSO) algorithm, a multi-objective variant of PSO for composite laminate design optimization. VEPSO is a modern coevolutionary algorithm which employs multiple swarms to handle the multiple objectives and the information migration between these swarms ensures that a global optimum solution is reached. The current problem has been formulated as a classical multi-objective optimization problem, with objectives of minimizing weight of the component for a required strength and minimizing the totalcost incurred, such that the component does not fail. In this chapter, an optimum configuration for a multi-layered unidirectional carbon/epoxy laminate is determined using VEPSO. The results are presented for various loading configurations of the composite structures. The VEPSO predicts the same minimum weight optimization and percentage savings in weight of the laminate when compared to GA for all loading conditions.There is small difference in results predicted by VEPSO and GA for some loading and stacking sequence configurations, which is mainly due to random selection of swarm particles and generation of populations re-spectively.The difference can be prevented by running the same programme repeatedly. The Thesis is concluded by highlighting the future scope of several potential applications based on the developments reported in the thesis.
6

10. SAXON SIMULATION MEETING : Präsentationen und Vorträge des 10. Anwendertreffens am 22. März 2018 an der Technischen Universität Chemnitz

Berger, Maik 22 June 2018 (has links)
Von der Professur Montage- und Handhabungstechnik der Fakultät für Maschinenbau der Technischen Universität Chemnitz wird seit 2009 das jährliche Simulationsanwendertreffen SAXSIM organisiert. Ausgewählte Beiträge werden in Form eines Tagungsbandes veröffentlicht. Das 10. Anwendertreffen SAXSIM fand am 22.03.2018 an der TU Chemnitz statt. / The Chair of Assembly and Handling Technology, which belongs to the Faculty of Mechanical Engineering, has organized the annual simulation user meeting SAXSIM since 2009. Select contributions will be published in conference proceedings. The 10th SAXSIM user meeting took place at Technische Universität Chemnitz on March 22, 2018.
7

11. SAXON SIMULATION MEETING : Präsentationen und Vorträge des 11. Anwendertreffens am 26. März 2019 an der Technischen Universität Chemnitz

Berger, Maik 05 July 2019 (has links)
Von der Professur Montage- und Handhabungstechnik der Fakultät für Maschinenbau der Technischen Universität Chemnitz wird seit 2009 das jährliche Simulationsanwendertreffen SAXSIM organisiert. Ausgewählte Beiträge werden in Form eines Tagungsbandes veröffentlicht. Das 11. Anwendertreffen SAXSIM fand am 26.03.2019 an der TU Chemnitz statt. / The Chair of Assembly and Handling Technology, which belongs to the Faculty of Mechanical Engineering, has organized the annual simulation user meeting SAXSIM since 2009. Select contributions will be published in conference proceedings. The 11th SAXSIM user meeting took place at Technische Universität Chemnitz on March 26, 2019.
8

12. SAXON SIMULATION MEETING : Präsentationen und Vorträge des 12. Anwendertreffens am 7. März 2023 an der Technischen Universität Chemnitz

Berger, Maik 24 May 2023 (has links)
Von der Professur Montage- und Handhabungstechnik der Fakultät für Maschinenbau der Technischen Universität Chemnitz wird seit 2009 das jährliche Simulationsanwendertreffen SAXSIM organisiert. Ausgewählte Beiträge werden in Form eines Tagungsbandes veröffentlicht. Das 12. Anwendertreffen SAXSIM fand am 07.03.2023 an der TU Chemnitz statt. / The Chair of Assembly and Handling Technology, which belongs to the Faculty of Mechanical Engineering, has organized the annual simulation user meeting SAXSIM since 2009. Select contributions will be published in conference proceedings. The 12th SAXSIM user meeting took place at Technische Universität Chemnitz on March 07, 2023.
9

13. SAXON SIMULATION MEETING : Präsentationen und Vorträge des 13. Anwendertreffens am 19. März 2024 an der Technischen Universität Chemnitz

Berger, Maik 20 June 2024 (has links)
Von der Professur Montage- und Handhabungstechnik der Fakultät für Maschinenbau der Technischen Universität Chemnitz wird seit 2009 das jährliche Simulationsanwendertreffen SAXSIM organisiert. Ausgewählte Beiträge werden in Form eines Tagungsbandes veröffentlicht. Das 13. Anwendertreffen SAXSIM fand am 19.03.2024 an der TU Chemnitz statt. / The Chair of Assembly and Handling Technology, which belongs to the Faculty of Mechanical Engineering, has organized the annual simulation user meeting SAXSIM since 2009. Select contributions will be published in conference proceedings. The 13th SAXSIM user meeting took place at Technische Universität Chemnitz on March 19, 2024.

Page generated in 0.0907 seconds