• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Destabilization and characterization of LiBH4/MgH2 complex hydride for hydrogen storage

Rivera, Luis A 01 June 2007 (has links)
The demands on Hydrogen fuel based technologies is ever increasing for substitution or replacing fossil fuel due to superior energy sustainability, national security and reduced greenhouse gas emissions. Currently, the polymer based proton exchange membrane fuel cell (PEMFC), is strongly considered for on-board hydrogen storage vehicles due to low temperature operation, efficiency and low environmental impact. However, the realization of PEMFC vehicles must overcome the portable hydrogen storage barrier. DOE and FreedomCAR technical hydrogen storage targets for the case of solid state hydrides are: (1) volumetric hydrogen density > 0.045 kgH2/L, (2) gravimetric hydrogen density > 6.0 wt%, (3) operating temperature < 150 degrees C, (4) lifetimes of 1000 cycles, and (5) a fast rate of H2 absorption and desorption. To meet these targets, we have focused on lithium borohydride systems; an alkali metal complex hydride with a high theoretical hydrogen capacity of 18 wt.%. It has been shown by Vajo et al. that adding MgH2, improves the cycling capacity of LiBH4. The pressure-composition-isotherms of the destabilized LiBH4 + MgH2 system show an extended plateau pressure around 4-5 bars at 350 degrees C with a good cyclic stability. The mentioned destabilizing mechanism was successfully utilized to synthesize the complex hydride mixture LiBH4 + 1/2MgH2 + Xmol% ZnCl2 catalyst (X=2, 4, 6, 8 and 10) by ball milling process. The added ZnCl2 exhibited some mild catalytic activity which resulted in a decomposition temperature reduction to 270 degrees C. X-ray powder diffraction profiles exhibit LiCl peaks whose intensity increases proportionately with increasing ZnCl2 indicating an interaction between catalyst and hydride system, possibly affecting the total weight percent of desorbed hydrogen. Thermal gravimetric analysis profiles for MgH2 + 5mol% nanoNi and LiBH4 + ZnCl2 + 3mol% nanoNi indicate that small concentrations of nano-nickel acts as an effective catalyst that reduces the mixture desorption temperature to around 225 degrees C and 88 degrees C, respectively. Future work will be focused on thermodynamic equilibrium studies (PCT) on the destabilized complex hydrides.
2

Theoretical and Experimental Study of Solid State Complex Borohydride Hydrogen Storage Materials

Choudhury, Pabitra 25 September 2009 (has links)
Materials that are light weight, low cost and have high hydrogen storage capacity are essential for on-board vehicular applications. Some reversible complex hydrides are alanates and amides but they have lower capacity than the DOE target (6.0 wt %) for 2010. High capacity, light weight, reversibility and fast kinetics at lower temperature are the primary desirable aspects for any type of hydrogen storage material. Borohydride complexes as hydrogen storage materials have recently attracted great interest. Understanding the above parameters for designing efficient complex borohydride materials requires modeling across different length and time scales. A direct method lattice dynamics approach using ab initio force constants is utilized to calculate the phonon dispersion curves. This allows us to establish stability of the crystal structure at finite temperatures. Density functional theory (DFT) is used to calculate electronic properties and the direct method lattice dynamics is used to calculate the finite temperature thermodynamic properties. These computational simulations are applied to understand the crystal structure, nature of bonding in the complex borohydrides and mechanistic studies on doping to improve the kinetics and reversibility, and to improve the hydrogen dynamics to lower the decomposition temperature. A combined theoretical and experimental approach can better lead us to designing a suitable complex material for hydrogen storage. To understand the structural, bulk properties and the role of dopants and their synergistic effects on the dehydrogenation and/or reversible rehydrogenation characteristics, these complex hydrides are also studied experimentally in this work.

Page generated in 0.0621 seconds