• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 36
  • 36
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modelling lucerne (Medicago sativa L.) crop response to light regimes in an agroforestry system

Varella, Alexandre Costa January 2002 (has links)
The general goal of this research was to understand the agronomic and physiological changes of a lucerne crop in distinct physical radiation environments and to verify the potential of lucerne to grow under shaded conditions. To achieve this, the research was conducted in four main steps: (i) firstly, experimental data collection in the field using two artificial shade materials (shade cloth and wooden slats) under inigated and non-irrigated conditions; (ii) a second experiment with data collection in a typical temperate dryland agroforestry area under non-irrigated conditions; (iii) generation of a light interception sub-model suitable for shaded crops and (iv) a linkage between the light interception sub-model and a canopy photosynthesis model for agroforestry use. In experiments 1 and 2, lucerne crop was exposed to 6 different light regimes: full sunlight (FS), shade cloth (FS+CL), wooden slats (FS+SL), trees (T), trees+cloth (T +CL) and trees+slats (T+SL). The FS+SL structure produced a physical radiation environment (radiation transmission, radiation periodicity and spectral composition) that was similar to that observed in the agroforestry site (f). The mean annual photosynthetic photon flux density (PPFD) was 41 % under the FS+CL, 44% under FS+SL and 48% under T compared with FS in clear sky conditions. Plants were exposed to an intermittent (sun/shade) regime under both FS+SL and T, whereas under FS+CL the shaded light regime was continuous. The red to far-red (RIFR) ratio measured during the shade period under the slats was 0.74 and under the trees was 0.64. However, R/FR ratio increased to 1.26 and 1.23 during the illuminated period under FS+SL and T, respectively, and these were equivalent to the ratio of 1.28 observed under the FS+CL and 1.31 in FS. The radiation use efficiency (RUE) of shoots increased under the 5 shaded treatments compared with full sunlight. The pattern of radiation interception was unchanged by radiation flux, periodicity and spectral composition and all treatments had a mean extinction coefficient of 0.82. However, the magnitude of the decrease in canopy growth was less than those in PPFD transmissivity. The mean lucerne annual dry matter (DM) yield was 17.5 t ha⁻¹ in FS and 10 t ha⁻¹ under the FS+CL, FS+SL and T regimes. This declined to 3.4 t DM ha⁻¹ under T+CL (22% PPFD transmissvity) and 4.1 t DM ha⁻¹ under T+SL (23% transmissivity). A similar pattern of response was observed for leaf net photosynthesis (Pn) rates under the shade treatments compared with full sun. In addition, spectral changes observed under the trees and slats affected plant motphology by increasing the number of long stems, stem height and internode length compared with full sunlight. Thus, there were two main explanations for the increase in RUE under shade compared with full sun: (i) preferential partition of assimilates to shoot rather than root growth and/or (ii) leaves under shade were still operating at an efficient part of the photosynthetic light curve. The changes proposed for the canopy Pn model were appropriate to simulate the radiation environment of an agroforestry system. However, the model underestimated DM yields under the continuous and intermittent shade regimes. These were considered to be mainly associated with plant factors, such as overestimation in maintenance respiration and partitioning between shoots and roots in shade and the intermittency light effect on leaf Pn rates. Further investigation in these topics must be addressed to accurately predict crop yield in agroforestry areas. Overall, the lucerne crop responded typically as a sun-adapted plant under shade. It was concluded that lucerne yield potential to grow under intermediate shade was superior to most of C3 pastures previously promoted in the literature.
32

Water use efficiency of six dryland pastures in Canterbury

Tonmukayakul, Nop January 2009 (has links)
The annual and seasonal water use efficiency of six pasture combinations were calculated from the ‘MaxClover’ Grazing Experiment at Lincoln University. Pastures have been established for six years and are grazed by best management practices for each combination. Measurements for this study are from individual plots of four replicates of ryegrass (RG)/white clover (Wc), cocksfoot (CF)/Wc; CF/balansa (Bal) clover; CF/Caucasian (Cc) clover; CF/subterranean (Sub) clover or lucerne. Water extraction measurements showed soils for all dryland pastures had a similar plant available water content of 280±19.8 mm. Dry matter measurements of yield, botanical composition and herbage quality were assessed from 1 July 2008 until 30 June 2009. Lucerne had the highest annual yield of 14260 kg DM/ha/y followed by the CF/Sub at 9390 kg DM/ha/y and the other grass based pastures at ≤ 6900 kg DM/ha/y. All pastures used about 670±24.4 mm/y of water for growth. Lucerne had the highest annual water use efficiency (WUE) of 21 kg DM/ha/mm/y of water used (total yield/total WU). The WUE of CF/Sub was the second highest at 15 kg DM/ha/mm/y, and the lowest was CF/Wc at 9 kg DM/ha/mm/y. The CF/Sub pastures had the highest total legume content of all grass based pastures at 21% and as a consequence had the highest annual nitrogen yield of 190 kg N/ha. This was lower than the monoculture of lucerne (470 kg N/ha). Ryegrass/white clover had the highest total weed component in all pastures of 61%. For dryland farmers spring is vital for animal production when soil temperatures are rising and moisture levels are high. The water use efficiency at this time is important to maximize pasture production. In spring lucerne produced 8730 kg DM/ha, which was the highest dry matter yield of all pastures. The CF/Sub produced the second highest yield of 6100 kg/DM/ha. When calculated against thermal time, CF/Sub grew 5.9 kg DM/ºCd compared with lucerne at 4.9 kg DM/ºCd. The higher DM yield from lucerne was from an extra 400 ºCd of growth. The highest seasonal WUE of all pastures occurred in the spring growing period. Linear regressions forced through the origin, showed lucerne (1/7/08-4/12/08) had a WUE of 30 kg DM/ha/mm (R2=0.98). Of the grass based pastures, CF/Sub produced 18 kg DM/ha/mm (R2=0.98) from 1/7 to 10/11/08 from 270 mm of water used. The lowest spring WUE was 13.5 kg DM/ha/mm by CF/Bal pastures which was comparable to the 14.3±1.42 kg DM/ha/mm WUE of CF/Wc, CF/Cc and RG/Wc pastures. During the spring, CF/Sub clover had the highest spring legume component of the grass based pastures at 42% and produced 120 kg N/ha. This was lower than the 288 kg N/ha from the monoculture of lucerne. Sub clover was the most successful clover which persisted with the cocksfoot. Based on the results from this study dryland farmers should be encouraged to maximize the potential of lucerne on farm, use cocksfoot as the main grass species for persistence, rather than perennial ryegrass, and use subterranean clover as the main legume species in cocksfoot based pastures. By increasing the proportion of legume grown the water use efficiency of a pasture can be improved. When pastures are nitrogen deficient the use of inorganic nitrogen may also improve pasture yields particularly in spring.
33

Diversifying crop rotations with temporary grasslands : potentials for weed mangement and farmland biodiversity

Meiss, Helmut 05 July 2010 (has links) (PDF)
Crop rotation may be used to prevent the continuous selection of particular weed species adapted to one crop type. This might be useful for weed management, economy in herbicide applications and promoting biodiversity. Common simple crop sequences might be diversified by introducing perennial forage crops. Impacts of such perennial crops on weeds were studied with four approaches : 1) Large-scale weed surveys in 632 fields in western France showed that weed species composition differed most strongly between perennial alfalfa crops and annual crops. Comparisons of fields before, during and after perennial alfalfa suggested that community composition varies in a cyclic way during such crop rotations. Several weed species problematic in annual crops were suppressed during and after perennial crops, but the appearance of other species led to equal or even higher plant diversities. 2) A 3-year field experiment with contrasting crop management options allowed an investigation of the underlying mechanisms for this: The absence of soil tillage reduced weed emergence but increased the survival of established plants. The permanent vegetation cover and frequent hay cuttings reduced weed growth, plant survival and seed production. 3) Greenhouse experiments testing the regrowth ability of individual plants after cutting showed strong differences between species and functional groups. An two-factorial experiment suggested that the negative impacts of cutting and competition on weed growth were mainly additive. 4) Special measurements of weed seed predation in the field experiment showed positive correlations with vegetation cover, indicating that this ecosystem service may be particularly fostered by perennial crops. Consistent preferences of seed predators for certain weed species indicates that seed predation may be another cause of the observed weed community shifts.
34

Modelling lucerne (Medicago sativa L.) crop response to light regimes in an agroforestry system

Varella, Alexandre Costa January 2002 (has links)
The general goal of this research was to understand the agronomic and physiological changes of a lucerne crop in distinct physical radiation environments and to verify the potential of lucerne to grow under shaded conditions. To achieve this, the research was conducted in four main steps: (i) firstly, experimental data collection in the field using two artificial shade materials (shade cloth and wooden slats) under inigated and non-irrigated conditions; (ii) a second experiment with data collection in a typical temperate dryland agroforestry area under non-irrigated conditions; (iii) generation of a light interception sub-model suitable for shaded crops and (iv) a linkage between the light interception sub-model and a canopy photosynthesis model for agroforestry use. In experiments 1 and 2, lucerne crop was exposed to 6 different light regimes: full sunlight (FS), shade cloth (FS+CL), wooden slats (FS+SL), trees (T), trees+cloth (T +CL) and trees+slats (T+SL). The FS+SL structure produced a physical radiation environment (radiation transmission, radiation periodicity and spectral composition) that was similar to that observed in the agroforestry site (f). The mean annual photosynthetic photon flux density (PPFD) was 41 % under the FS+CL, 44% under FS+SL and 48% under T compared with FS in clear sky conditions. Plants were exposed to an intermittent (sun/shade) regime under both FS+SL and T, whereas under FS+CL the shaded light regime was continuous. The red to far-red (RIFR) ratio measured during the shade period under the slats was 0.74 and under the trees was 0.64. However, R/FR ratio increased to 1.26 and 1.23 during the illuminated period under FS+SL and T, respectively, and these were equivalent to the ratio of 1.28 observed under the FS+CL and 1.31 in FS. The radiation use efficiency (RUE) of shoots increased under the 5 shaded treatments compared with full sunlight. The pattern of radiation interception was unchanged by radiation flux, periodicity and spectral composition and all treatments had a mean extinction coefficient of 0.82. However, the magnitude of the decrease in canopy growth was less than those in PPFD transmissivity. The mean lucerne annual dry matter (DM) yield was 17.5 t ha⁻¹ in FS and 10 t ha⁻¹ under the FS+CL, FS+SL and T regimes. This declined to 3.4 t DM ha⁻¹ under T+CL (22% PPFD transmissvity) and 4.1 t DM ha⁻¹ under T+SL (23% transmissivity). A similar pattern of response was observed for leaf net photosynthesis (Pn) rates under the shade treatments compared with full sun. In addition, spectral changes observed under the trees and slats affected plant motphology by increasing the number of long stems, stem height and internode length compared with full sunlight. Thus, there were two main explanations for the increase in RUE under shade compared with full sun: (i) preferential partition of assimilates to shoot rather than root growth and/or (ii) leaves under shade were still operating at an efficient part of the photosynthetic light curve. The changes proposed for the canopy Pn model were appropriate to simulate the radiation environment of an agroforestry system. However, the model underestimated DM yields under the continuous and intermittent shade regimes. These were considered to be mainly associated with plant factors, such as overestimation in maintenance respiration and partitioning between shoots and roots in shade and the intermittency light effect on leaf Pn rates. Further investigation in these topics must be addressed to accurately predict crop yield in agroforestry areas. Overall, the lucerne crop responded typically as a sun-adapted plant under shade. It was concluded that lucerne yield potential to grow under intermediate shade was superior to most of C3 pastures previously promoted in the literature.
35

Availability and management of manganese and water in bauxite residue revegetation

Gherardi, Mark James January 2004 (has links)
[Truncated abstract] Industrial processing to refine alumina from bauxite ore produces millions of tonnes of refining residue each year in Australia. Revegetation of bauxite residue sand (BRS) is problematic for a number of reasons. Harsh chemical conditions caused by residual NaOH from ore digestion mean plants must overcome extremely high pH (initially >12), saline and sodic conditions. At such high pH, manganese (Mn) is rapidly oxidised from Mn2+ to Mn4+. Plants can take up only Mn2+. Thus, Mn deficiency is common in plants used for direct BRS revegetation, and broadcast Mn fertilisers have low residual value. Added to this, physical conditions of low water-holding capacity and a highly compactable structure make BRS unfavourable for productive plant growth without constant and large inputs of water as well as Mn. However, environmental regulations stipulate that the residue disposal area at Pinjarra, Western Australia, be revegetated to conform with surrounding land uses. The major land use of the area is pasture for grazing stock. Hence, pasture revegetation with minimum requirement for fertiliser and water application is desirable. This thesis investigates a number of avenues with potential for maintaining a productive pasture system on BRS whilst reducing the current level of Mn fertiliser and irrigation input. Emphasis was placed on elucidation of chemical and physical factors affecting Mn availability to plants in BRS
36

Use of floral resources by the lacewing Micromus tasmaniae and its parasitoid Anacharis zealandica, and the consequences for biological control by M. tasmaniae

Robinson, K. A. January 2009 (has links)
Arthropod species that have the potential to damage crops are food resources for communities of predators and parasitoids. From an agronomic perspective these species are pests and biocontrol agents respectively, and the relationships between them can be important determinants of crop yield and quality. The impact of biocontrol agents on pest populations may depend on the availability of other food resources in the agroecosystem. A scarcity of such resources may limit biological control and altering agroecosystem management to alleviate this limitation could contribute to pest management. This is a tactic of ‘conservation biological control’ and includes the provision of flowers for species that consume prey as larvae but require floral resources in their adult stage. The use of flowers for pest management requires an understanding of the interactions between the flowers, pests, biocontrol agents and non-target species. Without this, attempts to enhance biological control might be ineffective or detrimental. This thesis develops our understanding in two areas which have received relatively little attention: the role of flowers in biological control by true omnivores, and the implications of flower use by fourth-trophic-level life-history omnivores. The species studied were the lacewing Micromus tasmaniae and its parasitoid Anacharis zealandica. Buckwheat flowers Fagopyrum esculentum provided floral resources and aphids Acyrthosiphon pisum served as prey. Laboratory experiments with M. tasmaniae demonstrated that although prey were required for reproduction, providing flowers increased survival and oviposition when prey abundance was low. Flowers also decreased prey consumption by the adult lacewings. These experiments therefore revealed the potential for flowers to either enhance or disrupt biological control by M. tasmaniae. Adult M. tasmaniae were collected from a crop containing a strip of flowers. Analyses to determine the presence of prey and pollen in their digestive tracts suggested that predation was more frequent than foraging in flowers. It was concluded that the flower strip probably did not affect biological control by lacewings in that field, but flowers could be significant in other situations. The lifetime fecundity of A. zealandica was greatly increased by the presence of flowers in the laboratory. Providing flowers therefore has the potential to increase parasitism of M. tasmaniae and so disrupt biological control. A. zealandica was also studied in a crop containing a flower strip. Rubidium-marking was used to investigate nectar-feeding and dispersal from the flowers. In addition, the parasitoids’ sugar compositions were determined by HPLC and used to infer feeding histories. Although further work is required to develop the use of these techniques in this system, the results suggested that A. zealandica did not exploit the flower strip. The sugar profiles suggested that honeydew had been consumed by many of the parasitoids. A simulation model was developed to explore the dynamics of aphid, lacewing and parasitoid populations with and without flowers. This suggested that if M. tasmaniae and A. zealandica responded to flowers as in the laboratory, flowers would only have a small effect on biological control within a single period of a lucerne cutting cycle. When parasitoids were present, the direct beneficial effect of flowers on the lacewing population was outweighed by increased parasitism, reducing the potential for biological control in future crops. The results presented in this thesis exemplify the complex interactions that may occur as a consequence of providing floral resources in agroecosystems and re-affirm the need for agroecology to inform the development of sustainable pest management techniques.

Page generated in 0.0618 seconds