• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 637
  • 127
  • 101
  • 90
  • 23
  • 16
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1184
  • 1184
  • 300
  • 271
  • 249
  • 217
  • 210
  • 200
  • 184
  • 173
  • 170
  • 169
  • 165
  • 129
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

THE COMMERCIAL IMPACT ON BUSINESS MODELS OF MEDICAL IMAGING SOLUTIONS THROUGH DATA-ANALYTICAL METHODOLOGIES

He, Jianyi 21 June 2021 (has links)
No description available.
122

A Device Compatible with Functional Magnetic Resonance Imaging for Assessing Brain Activity During a Finger Force Tracking Motor Task

Thompson, Paul M. 19 August 2013 (has links)
No description available.
123

Abdominal Aortic Sonography as a Cardiovascular Disease Risk Assessment

Brady, Austin January 2022 (has links)
No description available.
124

DEPTH-DEPENDENT BIAXIAL MECHANICAL BEHAVIOR OF NATIVE AND TISSUE ENGINEERING ARTICULAR CARTILAGE

Motavalli, Sayyed Mostafa 11 June 2014 (has links)
No description available.
125

Perceptions Toward Research Among Undergraduates in an Imaging Sciences Baccalaureate Program: A Secondary Analysis

Tschirner, Andrea Carol 10 January 2011 (has links)
No description available.
126

Investigating the Use of Convolutional Neural Networks for Prenatal Hydronephrosis Ultrasound Image Classification / Convolutional Neural Networks for Ultrasound Classification

Smail, Lauren January 2018 (has links)
Prenatal hydronephrosis is a common condition that involves the accumulation of urine with consequent dilatation of the collecting system in fetal infants. There are several hydronephrosis classifications, however, all grading systems suffer from reliability issues as they contain subjective criteria. The severity of hydronephrosis impacts treatment and follow up times and can therefore directly influence a patient’s well-being and quality of care. Considering the importance of accurate diagnosis, it is concerning that no accurate, reliable or objective grading system exists. We believe that developing a convolutional neural network (CNN) based diagnostic aid for hydronephrosis will improve physicians’ objectivity, inter-rater reliability and accuracy. Developing CNN based diagnostic aid for ultrasound images has not been done before. Therefore, the current thesis conducted two studies using a database of 4670 renal ultrasound images to investigate two important methodological considerations: ultrasound image preprocessing and model architecture. We first investigated whether image segmentation and textural extraction are beneficial and improve performance when they are applied to CNN input images. Our results showed that neither preprocessing technique improved performance, and therefore might not be required when using CNN for ultrasound image classification. Our search for an optimal architecture resulted in a model with 49% 5-way classification accuracy. Further investigation revealed that images in our database had been mislabelled, and thus impacted model training and testing. Although our current best model is not ready for use as diagnostic aid, it can be used to verify the accuracy of our labels. Overall, these studies have provided insight into developing a diagnostic aid for hydronephrosis. Once our images and their respective labels have been verified, we can further optimize our model architecture by conducting an exhaustive search. We hypothesize that these two changes will significantly improve model performance and bring our diagnostic aid closer to clinical application. / Thesis / Master of Science (MSc) / Prenatal hydronephrosis is a serious condition that affects the kidneys of fetal infants and is graded using renal ultrasound. The severity of hydronephrosis impacts treatment and follow-up times. However, all grading systems suffer from reliability issues. Improving diagnostic reliability is important for patient well-being. We believe that developing a computer-based diagnostic aid is a promising option to do so. We conducted two studies to investigate how ultrasound images should be processed, and how the algorithm that produces the functionality of the aid should be designed. We found that two common recommendations for ultrasound processing did not improve model performance and therefore need not be applied. Our best performing algorithm had a classification accuracy of 49%. However, we found that several images in our database were mislabelled, which impacted accuracy metrics. Once our images and their labels have been verified, we can further optimize our algorithm’s design to improve its accuracy.
127

Quantitative Image Analysis in Digital Breast Tomosynthesis

Ikejimba, Lynda Chilezie January 2015 (has links)
<p>Quantitative imaging is important in medical imaging. Physical phantoms are used. There is reason to believe that anthropomorphic physical phatoms are better than uniform phantoms. To investigate this question, we develop a novel imaging metrology with a phatient-based phantom and apply its use to several digital breast tomosytneshis machines. At the same time, we use the traditional means of assessing image quality. Our results show a strong dependence on image performance with the type of phantom used. Furthermore, we demonstrate the feasibility of this metrology in real, clinical applications.</p> / Dissertation
128

Acoustic investigation of microbubble response to medical imaging ultrasound pulses

Thomas, David H. January 2010 (has links)
Ultrasound contrast agents have the ability to provide locally increased echogenicity, improving the sensitivity and specificity of images. Due to the unique interaction of microbubbles with the imaging ultrasound field, contrast ultrasonography offers both improved diagnostic techniques, and the potential therapeutic uses of gene and drug delivery through the use of targeted agents. By enhancing the contrast at the tissue-blood interface, an improved image of the structure of organs can be achieved, which is useful in many areas of medical ultrasound imaging. Monitoring the flow of contrast agent in the blood stream also offers information on the degree of blood perfusion into an organ or microvasculature. Present knowledge of the interaction of microbubbles with ultrasound is far from complete. The full potential of contrast agents in improving diagnostic and therapeutic techniques has therefore not yet been achieved. The nonlinear and dynamic properties of microbubble response offer potentially large improvements in contrast to tissue ratio, through intelligent pulse sequence design and/or improved signal processing. Due to various drawbacks of populations studies, only by studying the response from single microbubbles can the interaction be fully understood. The variations of microbubble size and shell parameters within a typical sample of contrast agent dictate that a large number of single scatterer data are necessary to obtain information on the variability of microbubble response, which is not possible with current optical systems. This thesis aims to be a contribution to the understanding of contrast behaviour in response to medical imaging ultrasound pulses. A fully characterized microacoustic system, employing a wide-band piezoelectric transducer from a commercial ultrasound imaging system, is introduced, which enables the measurement of single scattering events. Single microbubble signals from two commercially available contrast agents, Definity R and biSphereTM, have been measured experimentally in response to a range of clinically relevant imaging parameters. The data has been analyzed, together with the results from appropriate theoretical models, in order to gain physical insight into the evolution and dynamics of microbubble signals. A theoretical model for the lipid shelled agent Definity has been developed, and the predicted response from a real sample of single microbubbles investigated. Various characteristics of resonant scatter have been identified, and used to distinguish resonant scatter in experimental acoustic single bubble data for the first time. A clear distinction between the populations of resonant and off-resonant scatter has been observed for a range of incident frequencies and acoustic pressures. Results from consecutive imaging pulses have been used to gain understanding of how initial size, shell material and encapsulated gas may effect the lifetime of a microbubble signal. The response to a basic pulse sequence is also investigated, and an alternative processing method which takes advantage of observed behaviour is presented. Improved understanding of the contrast-ultrasound interaction will provide the basis for improved signal processing tools for contrast enhanced imaging, with potential benefits to both diagnostic techniques and microbubble manufacture.
129

Investigation of Improved Quantification Techniques in Dedicated Breast SPECT-CT

Mann, Steve Dean January 2015 (has links)
<p>The work presented in this dissertation focuses on evaluation of absolute quantification accuracy in dedicated breast SPECT-CT. The overall goal was to investigate through simulations and measurements the impact and utilization of various correction methods for scattered and attenuated photons, characterization of incomplete charge collection in Cadmium Zinc Telluride detectors as a surrogate means of improving scatter correction, and resolution recovery methods for modeling collimator blur during image reconstruction. The quantification accuracy of attenuation coefficients in CT reconstructions was evaluated in geometric phantoms, and a slice-by-slice breast segmentation algorithm was developed to separate adipose and glandular tissue. All correction and segmentation methods were then applied to a pilot study imaging parathyroid patients to determine the average uptake of Tc-99m Sestamibi in healthy breast tissue, including tissue specific uptake in adipose and glandular tissue. </p><p>Monte Carlo methods were utilized to examine the changes in incident scatter energy distribution on the SPECT detector as a function of 3D detector position about a pendant breast geometry. A simulated prone breast geometry with torso, heart, and liver was designed. An ideal detector was positioned at various azimuthal and tilted positions to mimic the capabilities of the breast SPECT subsystem. The limited near-photopeak scatter energy range in simulated spectra was linearly fit and the slope used to characterize changes in scatter distribution as a function of detector position. Results show that the detected scatter distribution changes with detector tilt, with increasing incidence of high energy scattered photons at larger detector tilts. However, reconstructions of various simulated trajectories show minimal impact on quantification (<5%) compared to a primary-only reconstruction.</p><p>Two scatter compensation methods were investigated and compared to a narrow photopeak-only windowing for quantification accuracy in large uniform regions and small, regional uptake areas: 1) a narrow ±4% photopeak energy window to minimize scatter in the photopeak window, 2) the previously calibrated dual-energy window scatter correction method, and 3) a modified dual-energy window correction method that attempts to account for the effects of incomplete charge collection in Cadmium Zinc Telluride detectors. Various cylindrical phantoms, including those with imbedded hot and cold regions, were evaluated. Results show that the Photopeak-only and DEW methods yield reasonable quantification accuracy (within 10%) for a wide range of activity concentrations and phantom configurations. The mDEW demonstrated highly accurate quantification measurements in large, uniform regions with improved uniformity compared to the DEW method. However, the mDEW method is susceptible to the calibration parameters and the activity concentration of the scanned phantom. The sensitivity of the mDEW to these factors makes it a poor choice for robust quantification applications. Thus, the DEW method using a high-performance CZT gamma camera is still a better choice for quantification purposes</p><p>Phantoms studies were performed to investigate the application of SPECT vs CT attenuation correction. Minor differences were observed between SPECT and CT maps when assuming a uniformly filled phantom with the attenuation coefficient of water, except when the SPECT attenuation map volume was significantly larger than the CT volume. Material specific attenuation coefficients reduce the corresponding measured activity concentrations compared to a water-only correction, but the results do not appear more accurate than a water-only attenuation map. Investigations on the impact of image registration show that accurate registration is necessary for absolute quantification, with errors up to 14% observed for 1.5cm shifts. </p><p>A method of modeling collimator resolution within the SPECT reconstruction algorithm was investigated for its impact on contrast and quantification accuracy. Three levels of resolution modeling, each with increasing ray-sampling, were investigated. The resolution model was applied to both cylindrical and anthropomorphic breast phantoms with hot and cold regions. Large volume quantification results (background measurements) are unaffected by the application of resolution modeling. For smaller chambers and simulated lesions, contrast generally increases with resolution modeling. Edges of lesions also appear sharper with resolution modeling. No significant differences were seen between the various levels of resolution modeling. However, Gibbs artifacts are amplified at the boundaries of high contrast regions, which can significantly affect absolute quantification measurements. Convergence with resolution modeling is also notably slower, requiring more iterations with OSEM to reach a stable mean activity concentration. Additionally, reconstructions require far more computing time with resolution modeling due to the increase in number of sampling rays. Thus while the edge enhancement and contrast improvements may benefit lesion detection, the artifacts, slower convergence, and increased reconstruction time limit the utility of resolution modeling for both absolute quantification and clinical imaging studies. </p><p>Finally, a clinical pilot study was initiated to measure the average uptake of Tc-99m Sestamibi in healthy breast tissue. Subjects were consented from those undergoing diagnostic parathyroid studies at Duke. Each subject was injected with 25mCi of Sestamibi as part of their pre-surgical parathyroid SPECT imaging studies and scanned with the dedicated breast SPECT-CT system before their diagnostic parathyroid SPECT scan. Based on phantom studies of CT reconstructed attenuation coefficient accuracy, a slice-by-slice segmentation algorithm was developed to separate breast CT data into adipose and glandular tissue. SPECT data were scatter, attenuation, and decay corrected to the time of injection. Segmented CT images were used to measure average radiotracer concentration in the whole breast, as well as adipose and glandular tissue. With 8 subjects scanned, the average measured whole breast activity concentration was found to be 0.10µCi/mL. No significant differences were seen between adipose and glandular tissue uptake. </p><p>In conclusion, the application of various characterization and correct methods for quantitative SPECT imaging were investigated. Changes in detected scatter distribution appear to have minimal impact on quantification, and characterization of low-energy tailing for a modified scatter subtraction method yields inferior overall quantification results. Comparable quantification accuracy is seen with SPECT and CT-based attenuation maps, assuming the SPECT-based volume is fairly accurate. In general, resolution recovery within OSEM yields higher contrast, but quantification accuracy appears more susceptible to measurement location. Finally, scatter, attenuation, and resolution recovery methods, along with a breast segmentation algorithm, were implemented in a clinical imaging study for quantifying Tc-99m Sestamibi uptake. While the average whole breast uptake was measured to be 0. 10µCi/mL, no significant differences were seen between adipose and glandular tissue or when implementing resolution recovery. Thus, for future clinical imaging, it's recommended that the application of the investigated correction methods should be limited to the traditional DEW method and CT-based attenuation maps for quantification studies.</p> / Dissertation
130

Adaptive X-ray Computed Tomography

Moore, Jared William January 2011 (has links)
An adaptive pre-clinical x-ray computed tomography system, named "FaCT" was designed, built, and tested at the University of Arizona's Center for Gamma-Ray Imaging (CGRI). The FaCT system possesses the unique ability to change its magnification and dynamically mask the x-ray beam profile. Using these two abilities, the FaCT system can adapt its configuration to the object being imaged, and the task being performed, while achieving a reduction in the radiation dose applied for imaging.Development of the system included the design of all mechanical components, motion systems, and safety systems. It also included system integration of all electronics, motors, and communication channels. Control software was developed for the system and several high-performance reconstruction algorithms were implemented on graphics processing units for reconstructing tomographic data sets acquired by the system. A new geometrical calibration method was developed for calibrating the system that makes use of the full image data gathered by the system and does not rely on markers.An adaptive imaging procedure consisting of a preliminary scout scan, human guidance, and a diagnostic quality scan was developed for imaging small volumes of interest in the interior of an object at substantially reduced dose. The adaptive imaging procedure makes use of FaCT's adjustable magnification, beam-masking capability, and high-performance reconstruction software to achieve high-quality reconstruction of a volume of interest with less dose than would be required by a traditional x-ray computed tomography system without adaptive capabilities.To address ongoing research into mathematical rules for adapting an imaging system, such as FaCT, to better perform a given estimation task, a method of quantifying a system's ability to estimate a parameter of interest in the presence of nuisance parameters based on the Fisher Information was proposed. The method requires a statistical model of object variability. Possible strategies for increasing the performance of an estimation task, given an adaptive system, were suggested.

Page generated in 0.0902 seconds