• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 3
  • Tagged with
  • 37
  • 37
  • 33
  • 28
  • 27
  • 25
  • 21
  • 21
  • 21
  • 21
  • 21
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A comparison of biological and chemically induced leaching mechanisms of chalcopyrite

Absolon, Victor January 2008 (has links)
This dissertation reports a study of the dissolution mechanism which governs the leaching of Cu from chalcopyrite (CuFeS2) in acidic media at atmospheric pressure and examines the differences between chemical (abiotic), leaching and bioleaching. An array of solution, solid surface and bulk speciation studies were used to make a comprehensive study of the CuFeS2 leaching process(es). / Thesis (PhD)--University of South Australia, 2008.
22

Downstream purification and analysis of the recombinant human myelin basic protein produced in the milk of transgenic cows : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry, Massey University (Palmerston North) New Zealand. EMBARGOED till 28 July 2011

Al-Ghobashy, Medhat Ahmed Abdel-Hamid Unknown Date (has links)
Downstream purification and analysis of a model biopharmaceutical protein (recombinant human myelin basic protein) is described. The recombinant protein was expressed in the milk of transgenic cows and was found exclusively associated with the casein micellar phase. Binding of milk calcium to the active sites of a cation exchanger resin was used beneficially in this study in order to gently disrupt the casein micelles and liberate the recombinant protein. This approach was found superior to the conventional micelle disruption procedures with respect to product recovery, resin fouling due to milk components and column hydrodynamic properties. Further purification was carried out using Ni2+ affinity chromatography and resulted in purity more than 90% and a total recovery of 78%. A capillary electrophoresis total protein assay employing large volume sample stacking and a microsphere-based, sandwich-type immunoassay were developed and validated. Both methods were successfully integrated with the downstream purification protocol in order to evaluate various quality attributes of the recombinant protein. A onestep capillary isoelectric focusing protocol was developed in order to monitor the recombinant protein in milk samples. The results showed extra protein bands in the transgenic milk that had isoelectric points significantly lower than the theoretically calculated one which indicated that the protein had been modified during expression. The association between the recombinant protein and bovine milk caseins was explored at the molecular level using the surface plasmon resonance technique. Results showed a calciummediated interaction between the recombinant protein and the phosphorylated caseins. This selective interaction was not noted between the human myelin basic protein and milk caseins which indicated mammary gland-related posttranslational modifications, most likely phosphorylation. The co-expression of the recombinant protein and caseins in the mammary gland, along with the ability of the recombinant protein to form calcium bridges with caseins explained its association with the casein micellar phase in the transgenic milk. Despite this and owing to the low expression levels of the recombinant protein in milk, light scattering investigations using diffusing wave spectroscopy showed no significant differences between the transgenic and the non-transgenic milk samples with respect to the average micelle size and the micelle surface charges.
23

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
24

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
25

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
26

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
27

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
28

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
29

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
30

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.

Page generated in 0.0796 seconds