Spelling suggestions: "subject:"amedical needs assessment"" "subject:"comedical needs assessment""
1 |
A decision support system for telemedicine needs assessments in South AfricaTreurnicht, Maria Jacoba 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The various applications of Information and Communication Technologies (ICTs) in healthcare are increasingly
effective to improve the cost-effectiveness and quality of healthcare service delivery. Telemedicine is such an
application, using ICTs to provide health services over a distance. Since 1997, the South African Department of
Health has invested large amounts of capital to implement telemedicine systems in South Africa.
Unfortunately, telemedicine programs have had little success since, leading to many workstations standing
dormant.
Telemedicine implementation decision making that is based on insufficient evidence is identified as one of the
underlying problems that cause telemedicine programs to fail. It is proposed that implementation decisions
should be based on quantifiable evidence regarding the potential benefits of telemedicine. A decision support
system is developed that can be used to quantify potential benefits and plan telemedicine implementation
programs accordingly.
The decision support system is modelled and demonstrated using data from the Eastern Cape public health
sector. The first phase of the system guides decision makers to identify potential telemedicine benefits as well
as data sources that can be used to measure these benefits. The system is scoped to focus on the application of
telemedicine to support patient referrals between hospitals. Data sources are considered accordingly, with
electronic health record (EHR) data proving to be a feasible primary source for needs assessments, however
limiting the benefits that can be quantified.
The analysis of the needs assessment is included in the second phase of the decision support system. Data are
extracted, transformed and loaded into a data warehouse from where it can be analysed. The system includes
three analysis steps to: map referral patterns, analyse potential benefits of telemedicine programs and
determine cost-effective telemedicine solutions by allocating equipment at different hospitals. Analysis
techniques used in the system include Pareto analysis, economic analysis, linear programming and the use of a
genetic algorithm.
It is proposed that the potential benefit results and equipment allocation algorithm be used to plan
telemedicine programs for continuous evaluation. The final phase of the system therefore guides decision
makers to use the results for implementation planning as well as evaluability assessments, for future
management and evaluation of telemedicine programs.
The decision support system is validated using patient referral data from the Western Cape public health
sector. The case study proved that the system is applicable to the real-world and could be a valuable tool for
decision makers to base telemedicine implementation planning on quantifiable evidence.
The limitation on size and quality of both the Eastern Cape and Western Cape data sets, caused that the full
potential of the system could not be demonstrated and validated. It is recommended that the quality standards
of EHR referral reports be improved, to ensure more accurate benefit results. Future work is recommended to
include qualitative needs assessments in the scope of the decision support system, hereby increasing the
amount of benefits to be assessed. Although it is expected that the developed system is capable to support
even better resolution decisions with more detailed data sets, the system developed in this study proved
already adequate for improved implementation decision making. This could lead to higher success rates of
telemedicine programs and ultimately better quality healthcare for all. / AFRIKAANSE OPSOMMING: Die verskillende toepassings van Informasie en Kommunikasie Tegnologie (IKT) in gesondheidsorg, speel ʼn rol in
toenemende doeltreffendheid om die koste-effektiwiteit en kwaliteit van gesondheidsorg dienslewering te
verbeter. Tele-geneeskunde is een van hierdie toepassings, wat IKT gebruik om gesondheidsdienste oor ʼn
afstand te kan voorsien. Die Suid-Afrikaanse Departement van Gesondheid belê sedert 1997, groot bedrae
kapitaal in die implementering van tele-geneeskunde stelsels, in Suid-Afrika. Ongelukkig het tele-geneeskunde
programme min sukses behaal sedertdien, wat veroorsaak dat vele werkstasies dormant is.
Die basering van implementeringsbesluite op onvoldoende getuienis, is geïdentifiseer as een van die
onderliggende probleme wat veroorsaak dat tele-geneeskunde programme misluk. Daar word voorgestel dat
implementeringsbesluite gebaseer moet word op kwantifiseerbare getuienis ten opsigte van die potensiële
voordele van telemedisyne. ʼn Besluitnemingsondersteuning stelsel is ontwikkel wat gebruik kan word om die
potensiële voordele te kwantifiseer en dienooreenkomstig implementering van tele-geneeskunde programme
te beplan.
Die stelsel is gemodelleer en gedemonstreer aan die hand van data uit die Oos-Kaap publieke
gesondheidsektor. Die eerste fase van die stelsel begelei besluitnemers om potensiële voordele van telegeneeskunde,
sowel as data-bronne wat gebruik kan word om hierdie voordele te meet, te identifiseer. Die
stelsel is beperk tot ʼn fokus op die ondersteuning wat tele-geneeskunde aan hospitaal pasiënt
verwysingstelsels, kan bied. Data bronne is dienooreenkomstig oorweeg: elektroniese mediese rekords (EMR)
word erken as ʼn gunstige primêre databron, maar veroorsaak egter beperkings op die aantal voordele wat
gekwantifiseer kan word.
Die behoeftebepaling word uitgevoer in die tweede fase van die besluitnemingsondersteuning stelsel. Data is
onttrek, getransformeer is en gelaai in 'n data stoor, vanwaar dit ontleed kan word. Die stelsel sluit drie analisestappe
in: verwysingspatroon analise, berekening van potensiële voordele vir tele-geneeskunde programme en
die bepaling van koste-effektiewe oplossings deur toekenning van toerusting by verskillende hospitale. Die
analise tegnieke wat in die stelsel gebruik word, sluit die volgende in: Pareto analise, ekonomiese analise,
lineêre programmering en 'n genetiese algoritme.
Die gebruik van potensiële voordeel resultate en die toerusting toekenning algoritme word voorgestel vir die
beplanning vir deurlopende evaluering in tele-geneeskunde programme. Die finale fase van die stelsel is
gestruktureer, om besluitnemers te begelei in die gebruik van analise resultate, vir implementering beplanning
sowel as evalueerbaarheid studies, wat sodoende deurlopende evaluering en bestuur van tele-geneeskunde
programme sal verbeter.Die besluitnemingsondersteuning stelsel is gevalideer deur pasiënt verwysings data
van die Wes-Kaap publieke gesondheidsektor, te gebruik. Die gevallestudie het bewys dat die stelsel toepaslik
is in die werklike wêreld en kan as ʼn waardevolle hulpmiddel vir besluitnemers dien om tele-geneeskunde
implementering beplanning op kwantifiseerbare bewyse te baseer.
Die beperkings op die grootte en gehalte van beide die Oos-Kaap en Wes-Kaap datastelle het veroorsaak dat
die stelsel nie tot sy volle reg gedemonstreer en gevalideer kon word nie. Verbeterings in kwaliteit standaarde
van EMR verwysing data word aanbeveel om meer akkurate resultate te bekom. Verdere studies wat die
byvoeg van kwalitatiewe meetings in die stelsel ondersoek, sal die omvang van potensiële voordele verbeter en
dus die algehele waarde van die stelsel verbeter. Alhoewel die ontwikkelde stelsel in staat is om beter resolusie
besluite te kan ondersteun met meer gedetailleerde data, is dit bewys dat die huidige stelsel reeds voldoende
is om besluitneming te verbeter. Beter besluitneming gevolglik lei tot hoër sukseskoerse van tele-geneeskunde
programme en uiteindelik verbeterde gehalte gesondheidsorg vir almal.
|
Page generated in 0.11 seconds