Spelling suggestions: "subject:"medicinal"" "subject:"edicinal""
101 |
Synthetic chemistry and protein molecular modelling towards novel, high affinity ligands for the 5-HTâ†1â†E receptorPardoe, David Alan January 1996 (has links)
No description available.
|
102 |
Complexes of functionalised polyamines with diagnostic and therapeutic applicationsKay, Richard D. January 2000 (has links)
No description available.
|
103 |
Ethnopharmacology and phytochemistry of some selected medicinal plants in KwaZulu Natal.Ntuli, Siyabulela Sboniso Brightson Noel. January 2006 (has links)
In this ethnopharmacological study to isolate, purify, identify and test crude and
isolated compounds from organic and aqueous extracts from stem and leaves of
Protorhus longifolia and Sclerocarya birrea, stem bark of Hibiscus cannabinus and
Heteropyxis natalensis, leaves of Acokanthera venenata, Carissa marcrocarpa and
Syzygium cordatum, seeds of Chiononthus foveolatus and calyces of Hibiscus
sabdariffa were tested against seven pathogenic microorganisms which included six
bacterial species [Klebsiella pneumoniae (ATCC 12265), Bacillus cereus (ATCC 11778), Salmonella typhimurium (ATCC 13311), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 35219), Staphylococcus aureus (ATCC 29213)) and fungal yeast Candida albicans (ATCC 10231)]. Both organic and aqueous extracts from these medicinal plants exhibited antimicrobial properties against one or more mlcroorgamsms. The extracts of stem bark and leaves were tested for antimicrobial properties. Crude extracts that showed the highest activity were analysed through chromatographic and spectroscopic techniques to isolate, purify and characterise their active components. The highly active antimicrobial extracts were further tested for antimicrobial activity. Chromatographic (TLC and CC) spectroscopic (IR, 13C, 1HNMR) analyses of Syzygium cordatum leaf extract in ethyl acetate revealed the presence of C-30 triterpenes, ursolic (3B-hydroxyurs-12-en-28-oic acid) (UA) and oleanolic (3-hydroxylean-12-en-28-oic acid) (OA) acids; a mixture of methyl maslinate (2a, 3B-dihydroxyolean-12-en-28-oic acid methyl ester) (MM) and methyl corosolate (MC). Analyses of Protorhus longifolia leaf extract in hexane and ethylacetate revealed the presence of the alkaloid lupeol (lup-20(29)-en-3pB-ol), lupenone [lup - 20 (29) - en - 3 - one or lup - 20 ( 30 ) - en - 3 - one], lupinine (octahydro-2H-quinolizine-lmethanol),
lupulon (3 ,5-dihydroxy-2,6,6-tris(3-methyl-2-butenyl)-4-(3-methy1-1-oxobutyl)-2,4-yclohexadien-1-one) or (3,5-dihdroxy-4-isovaleryl-2,6,6-tris(3-methyl-2-butenyl)-2, 4-cyclohexadien-1-one) and luteolin [(2-(3, 4-dihydroxyphenyl)-5, 7-dihydroxy-4H -1-benzopyran-4-one), 3',4', 5,7 -tetrahydroxyflavone or 5,7,3' 4' -
tetrahydroxyflavone] and other compounds to be characterised in future studies.
Sclerocarya birrea bark extract in methanol was found to contain mixtures of
compounds that could not be separated due to solvent complications. Heteropyxis
natalensis stem bark in ethyl acetate gave betunilic acid (3B-hydroxy-20(29)-lupaene-
28-oic acid) as a major compound. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2006.
|
104 |
Bioactive sesquiterpenoids from dicoma anomala subsp. gerrardiiVan der Merwe, Marina Mikhailovna. January 2008 (has links)
Through South Africa’s first collaborative project between a large scientific organisation, the Council for Scientific and Indust rial Research (CSIR), and the Traditional Healer’s Committee, Dicoma anomala was identified as a plant containing potent anticancer and antimalarial compo unds. In the process of evaluation, extracted plant material with reported or anecdotal use for the treatment of respiratory problems was found to have significant anticancer activity in vitro in a 3-cell line preliminary screen . The extract was further shown to have potent anticancer activity against the 60-cell line panel at the National Cancer Institute (NCI) in the USA. Bioassay-guided fractio nation, initially utilising an in vitro anticancer assay, and structural elucidation resul ted in two potent compounds with sesquiterpenoid skeletons (C-15 and C-30). The crystal structure of the C-15 compound, not published previously, was obtained. B oth compounds were further screened in an antiplasmodial assay during the cour se of the National Drug Development Platform (RSA: CSIR, MRC and UCT) proje ct, and were found to have potent activity against Plasmodium falciparum (a malaria protozoon). Although the C-15 compound had a selectivity index (SI) of 10, suggesting that it was suitable for subsequent development, the dimer was highly toxic (SI index of 1), limiting opportunities for future development. A further study of the structure- activity relationship (SAR), which was initiated fo r the C-15 compound, showed that removal of each unsaturated structural compone nt decreased activity 10–fold in both bioassays. Additional investigations were c arried out into amino-acid Michael adducts with the exocyclic double bond of t he C-15 sesquiterpenoids, and the products were characterised by NMR spectroscopy and mass spectrometry. A similar investigation, involving the conjugate addi tion of simple amines, was undertaken in an attempt to enhance the bioavailabi lity of the parent sesquiterpenoid. Three diethylamine derivatives wer e prepared and characterised. A general 10-fold drop in the bioactivity of these “pro-drug” derivatives in both assays was observed. Finally, the C-15 compound was tested in vivo in the Plasmodium berghei murine malaria model and was found to have some eff ect on the survival rates of the laboratory animals when c ompared with the control. A possible mode of action is suggested based on the e xperimental and published bioactivity data. Further studies to improve the bi oactivity and alternative design of future in vivo studies are also proposed. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
105 |
Effects of crude leaf extracts of Ficus thonningii on growth, gastrointestinal morphometrry and clinical biochemistry of suckling Sprague Dawley ratsDangarembizi, Rachael 17 February 2014 (has links)
Ficus thonningii is a nutraceutical that is extensively used in ethnomedicine. Nursing mothers
use F. thonningii leaves as nutritional and medicinal supplements and are at risk of exposing
their infants to its constituent phytochemicals. The exposure of the sensitive neonatal
gastrointestinal tract (GIT) to these phytochemicals can result in irreversible changes in
growth and development. The objectives of this study were to determine the effects of crude
F. thonningii extracts on; growth, morphology and morphometry of the abdominal viscera
and clinical biochemistry of neonatal rats.
Forty, suckling Sprague Dawley rats of either sex were randomly divided into 5 groups. Each
group was orally gavaged once daily with either low (50 mg/kg b.w) or high (500 mg/kg b.w)
doses of aqueous or methanolic extracts of F. thonningii, for 7 days. The control rats received
distilled water. The pups were euthanased and tissues were collected and weighed. Samples
of the liver, caecum and proximal small intestine were preserved and processed for histology.
Plasma biochemical parameters were analysed colorimetrically. Data was presented as means
+ SD.
F. thonningii extracts exhibited trophic effects on the stomach and ceacal mucosa of rats but
had no significant growth-promoting effects on the small intestine and visceral organs.
Histological analysis of the intestine, liver and caeca revealed no mucosal damage. Clinical
chemistry parameters were not abnormally altered. There was a significant decrease (p<0.05,
ANOVA) in the plasma concentrations of basal (non-fasting) glucose in the pups on the high
methanolic extracts. However, the triglyceride and cholesterol levels were unaltered by the
treatments.
The findings suggest that F. thonningii extracts exhibit trophic effects on the mucosal layers
of the stomach and caecum. F. thonningii extracts also possess glucose-lowering activity. At
low doses, F. thonningii extracts can be safely used without the risk of any disruption in the
structural integrity of the neonatal rat GIT and function of the liver and kidneys.
|
106 |
Application of cucurbit[7]uril as an artificial receptor for seizure-inducing agents and anti-bacterial compoundsKuok, Kit Ieng January 2018 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
107 |
Isolation and structure elucidation of new compounds from Cornus Controversa and Delphinium ChrysotrichumUnknown Date (has links)
The aim of this dissertation was to explore structurally unique secondary
metabolites from herb medicinal plants Cornus controversa and Delphinium
chrysotrichum. The introduction in the first chapter provides a detailed review about the research progress of chemical constitutents of the genus Cornus. In addition, its pharmacological activities were also summarized in this chapter to provide a framework for understanding the roles of medicinal herbs belong to genus Cornus as anti-diabetes therapeutics and to deliver useful information for further research.
In chapter two, seven new compounds, including one iridoid glucoside, cornoside
A (59), five iridoid aglycones, cornolactones A – E (60 – 64) and one indenone
glucoside, cornoside B (65), together with 10 known compounds have been isolated from
the leaves of Cornus controversa. The structures of these compounds were established by
interpretation of spectroscopic data. Cornolactone A (61) is the first natural cis-fused tricyclic dilactone iridoid containing both a five- and six-membered lactone
ring. Cornoside B (65) is the first alkaloid isolated from the genus Cornus bearing an
indole-3-lactic acid-11--D-glucopyranoside skeleton.
In chapter three, we described the structure elucidation of three new diterpenoid
alkaloids delphatisine D (77), chrysotrichumines A (78) and B (79), as well as 11 known
compounds from the whole plants of Delphinium chrysotrichum. Delphatisine D (77) is a
rare atisine-type alkaloid from genus Delphinium and is the C-15 epimer of spiramine C
which bears an internal carbinolamine ether linkage (NCOC) between C-7 and C-20. Chrysotrichumine A (78) is a rare natural C19-diterpenoid alkaloid possessing a nitrone
group between C-17 and C-19. In addition, their cytotoxic activity against human breast
cancer cell lines of MCF-7 and MDA-MB-231 were also reported.
In chapter four, the detailed extraction and isolation procedures of the new
compounds, cornosides A and B, cornolactones A – E, delphatisine D, chrysotrichumine
A and B, as well as of all the known compounds were described. In addition, the
experimental procedures for the determination of PPARγ and LXR agonistic activities
and the MTT cytotoxicity assay were listed in this chapter. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
|
108 |
In vitro and in vivo study of pyrrolizidine alkaloids-induced hepatotoxicity. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Li, Yanhong. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 192-212). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
109 |
Studies on the uterotonic alkaloids of fructus evodiae.January 1979 (has links)
King Cheung-lam. / Thesis (M. Ph.)--Chinese University of Hong Kong. / Bibliography: leaves 81-91.
|
110 |
Exploring anthraquinones from Rubiae Radix and celastrol from Celastrus orbiculatus for the treatment of psoriasis. / CUHK electronic theses & dissertations collectionJanuary 2012 (has links)
銀屑病是一種免疫相關的慢性炎症性皮膚病,其發病率約占世界人口的1-3%,而現今仍然缺乏有效安全的根治方法。國內外使用中草藥治療銀屑病取得較好的療效,但目前缺少對其進行系統研究和開發。我們研究小組之前對61種常用治療銀屑病中藥進行篩選, 發現中藥茜草根和南蛇藤的乙醇提取物具有強大的抑制表皮細胞增生的作用,本博士研究課題的目的是確定新的安全有效的用于治療銀屑病的中藥化學成分, 並闡明其作用機制。 / 本研究篩選了28種存在于這兩種中藥中的化學單體成分,采用體外培養永生化的人類皮膚良性角質形成細胞株HaCaT, 應用MTT法, 繪制細胞生長曲線,獲得抑制50%細胞生長所需藥物濃度(IC50)。實驗結果發現1-羟基-3-甲基蒽醌(HMA), 1,4-二氨基-2,3-(2-苯氧基乙氧基)蒽醌 (DBA)和南蛇藤表現了強大的抗表細胞生長作用,其48小時培養後的IC50分別爲17.9,15.8,1.1 μM. 值得一提的是這些化合物對正常人表皮角質細胞HEK和人類成纖維細胞Hs68只有相對輕微細胞毒性。 / 隨後進行的機理研究,通過熒光染色,DNA凝膠電泳,細胞周期檢測,流式細胞計檢測及Western blot 分析結果表明, HMA和南蛇藤素是通過誘導細胞凋亡作用抑制HaCaT細胞生長。其中南蛇藤素通過線粒體凋亡和死亡受體介導的兩種通路誘導細胞凋亡, 其誘導細胞凋亡作用與其抑制核因子-κB在HaCaT細胞中的表達和活化有關。 / 另一方面,DBA 抑制人體表皮角質細胞生長的作用機理在于其對角質細胞終末分化的誘導作用。DBA與HaCaT和HEK細胞共同培養96小時後,能顯著促進細胞角質化外膜形成,同時上調角蛋白K1/10,人體套膜蛋白,轉谷氨酰胺酶-1表達和下調角蛋白K5/14表達。而利用小鼠尾部鱗片表皮模型對HMA的外用制劑進行測試,結果顯示HMA誘導角質細胞終末分化能力較弱。 / 總而言之,本研究課題從兩種中藥中成功發現三個具有較強的抗銀屑病活性的化學單體成分,這些來自中藥的天然産物具有很好的開發成新的銀屑病治療外用制劑的應用前景。 / Psoriasis is an immunologically-mediated chronic inflammatory disease of the skin and joints affecting approximately 1-3% of the world’s population. Traditionally, Chinese medicine has been extensively used both inside and outside China for treating psoriasis with promising clinical results. Based on the promising findings in our previous screening project on 61 psoriasis-treating Chinese medicines which showed the root of Rubia cordifolia L. (Rubiae Radix) to have potent anti-psoriatic action, the present study aimed to identify active anti-psoriatic chemical constituents derived from Rubiae Radix and another Chinese herb namely Celastrus orbiculatus Thunb. and to elucidate the underlying mechanisms of action. / Microplate MTT assay was performed to evaluate the anti-proliferative actions of 28 selected Rubiae Radix-derived anthraquinones and other chemical ingredients on cultured HaCaT keratinocytes. Among them, 1-hydroxy-3-methyl-anthraquinone (HMA) and 1,4-diamino-2,3-bis(2-phenoxyethoxy)anthraquinone (DBA), as well as celastrol, a Celastrus orbiculatus-derived triterpene, were found to possess significant anti-proliferative action on HaCaT cells, with IC₅₀ value of 17.9, 15.8 and 1.1 μM, respectively. All DBA, HMA and celastrol showed only mild to moderate toxic effects on normal human keratinocyte HEK cells and human fibroblast Hs68 cells. / Mechanistically, celastrol and HMA was found to induce apoptosis in a dose-dependent manner in HaCaT cells as characterized by DNA fragmentation, phosphatidyl-serine externalization and activation of caspase 3. Further studies by flow cytometric and western blot analyses demonstrated that the celastrol-induced apoptosis on HaCaT cells was associated with the inhibition of NF-κB pathway and through caspase-related apoptotic pathway as characterized by activation of caspase proteins, regulation of Bcl-2 family proteins and depolarization of mitochondrial potential. / On the other hand, DBA showed an ability to induce terminal differentiation in cultured human keratinocytes and this capability is believed to be responsible for its growth inhibitory effects. DBA significantly accentuated the cornified envelope formation in HEK and HaCaT keratinocytes together with the augmentation of K1/K10, involucrin and transglutaminase 1 protein levels and decrease of expression of K5/K14 protein in DBA-treated cells. However, the subsequent in vivo study using a mouse tail model showed that HMA did not have significant effects on modulating keratinocyte terminal differentiation. / Taken together, our present PhD project successfully identified DBA, HMA and celastrol to have potent anti-psoriatic action on in vitro models, and the experimental findings render these naturally-occurring chemicals to be promising candidates for further development into anti-psoriatic pharmaceutical agents. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Zhou, Linli. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 213-244). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iii / Publications --- p.v / Acknowledgements --- p.vii / Table of Contents --- p.viii / List of Figures --- p.xvii / List of Tables --- p.xxi / List of Abbreviations --- p.xxii / Chapter Chapter One --- General Introduction / Chapter 1.1 --- Psoriasis --- p.2 / Chapter 1.1.1 --- Structure of skin --- p.2 / Chapter 1.1.2 --- Epidemiology of psoriasis --- p.3 / Chapter 1.1.3 --- Pathogenesis --- p.5 / Chapter 1.1.4 --- Classification --- p.8 / Chapter 1.1.4.1 --- Nonpustular (plaque type) psoriasis --- p.9 / Chapter 1.1.4.2 --- Guttate psoriasis --- p.9 / Chapter 1.1.4.3 --- Pustular psoriasis --- p.9 / Chapter 1.1.4.4 --- Erythrodermic psoriasis --- p.10 / Chapter 1.1.4.5 --- Nail psoriasis --- p.11 / Chapter 1.1.4.6 --- Psoriatic arthritis --- p.11 / Chapter 1.1.5 --- Comorbidities --- p.13 / Chapter 1.2 --- Treatment of Psoriasis --- p.16 / Chapter 1.2.1 --- Conventional treatment for psoriasis --- p.16 / Chapter 1.2.1.1 --- Topical therapy --- p.16 / Chapter 1.2.1.2 --- Phototherapy --- p.19 / Chapter 1.2.1.3 --- Systemic therapy --- p.21 / Chapter 1.2.2 --- Targeted immunotherapy --- p.24 / Chapter 1.2.3 --- Combination, rotational and sequential therapy --- p.25 / Chapter 1.2.4 --- Complementary treatment --- p.26 / Chapter 1.3 --- Traditional Chinese Medicine for Psoriasis --- p.30 / Chapter 1.3.1 --- Prescriptions for psoriasis based on pattern differentiation --- p.30 / Chapter 1.3.2 --- Clinical and experimental study of TCM for psoriasis --- p.34 / Chapter 1.3.3 --- Possible action mechanisms of Chinese herbs for psoriasis --- p.34 / Chapter 1.3.4 --- Previous studies on TCM for psoriasis conducted by our research group --- p.35 / Chapter 1.4 --- Aims and Objectives of the Present Study --- p.38 / Chapter Chapter Two --- Phytochemical and Apoptotic Studies of Rubiae Radix-derived Anthraquinones and Other Related Compounds / Chapter 2.1 --- Introduction --- p.41 / Chapter 2.2 --- Selection and Screening of Rubiae Radix-derived anthraquinones and Other Related Compounds for Anti-proliferative Action on Cultured HaCaT Human Keratinocytes --- p.43 / Chapter 2.2.1 --- Introduction --- p.43 / Chapter 2.2.2 --- Materials and methods --- p.45 / Chapter 2.2.2.1 --- Procurement of Rubiae Radix-derived anthraquiones and other related compounds --- p.45 / Chapter 2.2.2.2 --- Purification of anthraquinones from Rubiae Radix --- p.50 / Chapter 2.2.2.3 --- General cell culture --- p.54 / Chapter 2.2.2.4 --- SRB assay --- p.55 / Chapter 2.2.2.5 --- MTT assay --- p.56 / Chapter 2.2.2.6 --- Assessment of synergistic or antagonistic effects between two active anthraquiones --- p.56 / Chapter 2.2.2.7 --- Statistical analysis --- p.57 / Chapter 2.2.3 --- Results --- p.57 / Chapter 2.2.3.1 --- Anti-proliferative effects of 35 Rubiae Radix fractions on HaCaT cells by SRB assay --- p.57 / Chapter 2.2.3.2 --- Anti-proliferative effects of the 27 anthraquinones and related compounds on HaCaT cells by SRB assay --- p.59 / Chapter 2.2.3.3 --- Confirmation of the anti-proliferative action of 8 active pure compounds using MTT assay --- p.61 / Chapter 2.2.3.4 --- Cytotoxic effects of 1-hydroxy-3-methyl-anthraquinone and1,4-diamino-2,3-bis(2-phenoxyethoxy)anthraquinone on the growth of HEK and Hs68 cells --- p.64 / Chapter 2.2.3.5 --- Drug interactions between different active anthraquinones --- p.67 / Chapter 2.2.4 --- Discussion --- p.69 / Chapter 2.3 --- Investigations of the Apoptotic Effects of DBA and HMA on HaCaT cells --- p.71 / Chapter 2.3.1 --- Introduction --- p.71 / Chapter 2.3.2 --- Materials and methods --- p.76 / Chapter 2.3.2.1 --- Chemicals --- p.76 / Chapter 2.3.2.2 --- General cell culture methods --- p.76 / Chapter 2.3.2.3 --- Cell cycle analysis with PI staining --- p.76 / Chapter 2.3.2.4 --- Hoechst fluorescence staining for morphological evaluation --- p.77 / Chapter 2.3.2.5 --- DNA fragmentation assay --- p.77 / Chapter 2.3.2.6 --- Detection of apoptosis by flow cytometry --- p.78 / Chapter 2.3.2.7 --- Prepare cytosol fraction of HaCaT cells --- p.79 / Chapter 2.3.2.8 --- Western blot analysis --- p.79 / Chapter 2.3.2.9 --- Statistical analysis --- p.80 / Chapter 2.3.3 --- Results --- p.76 / Chapter 2.3.3.1 --- Action of DBA and HMA on cell cycle progression --- p.80 / Chapter 2.3.3.2 --- Alteration of cellular morphology --- p.84 / Chapter 2.3.3.3 --- Detection of DNA fragmentation --- p.86 / Chapter 2.3.3.4 --- Quantitative analysis of apoptotic cells by annexin V-PI staining --- p.88 / Chapter 2.3.3.5 --- Activation of procaspase-3 and release of cytochrome c protein --- p.91 / Chapter 2.3.4 --- Discussion --- p.94 / Chapter 2.4 --- General Discussion --- p.97 / Chapter Chapter Three --- Effects of Rubiae Radix and Its-derived Anthraquinones on Keratinocyte Terminal Differentiation / Chapter 3.1 --- Introduction --- p.100 / Chapter 3.2 --- Materials and Methods --- p.105 / Chapter 3.2.1 --- Chemicals --- p.105 / Chapter 3.2.2 --- General cell culture --- p.105 / Chapter 3.2.3 --- Cornified envelope (CE) formation assay --- p.106 / Chapter 3.2.4 --- Western blot analysis --- p.107 / Chapter 3.2.4 --- Statistical analysis --- p.107 / Chapter 3.3 --- Results --- p.108 / Chapter 3.3.1 --- EA fraction of Rubiae Radix, DBA and HMA stimulates CE formation --- p.108 / Chapter 3.3.2 --- EA fraction of Rubiae Radix, DBA and HMA regulated TG1 expression and involucrin production in cultured human keratinocytes --- p.112 / Chapter 3.3.3 --- Regulation of cytokeratins by EA fraction of Rubiae Radix, DBA and HMA --- p.118 / Chapter 3.4 --- Discussion --- p.128 / Chapter Chapter Four --- Anti-psoriatic Action of Celastrol from Celastrus orbiculatus / Chapter 4.1 --- Introduction --- p.136 / Chapter 4.2 --- Anti-proliferative Action of Celastrol on Cultured Human Keratinocytes and Other Cell Types --- p.138 / Chapter 4.2.1 --- Introduction --- p.138 / Chapter 4.2.2 --- Materials and methods / Chapter 4.2.2.1 --- Chemicals --- p.138 / Chapter 4.2.2.2 --- General cell culture --- p.139 / Chapter 4.2.2.3 --- MTT assay --- p.139 / Chapter 4.2.2.4 --- Statistical analysis --- p.139 / Chapter 4.2.3 --- Results --- p.142 / Chapter 4.2.3.1 --- Anti-proliferative effect of celastrol on cultured cells --- p.142 / Chapter 4.2.4 --- Discussion --- p.145 / Chapter 4.3 --- Induction of Apoptosis by Celastrol on Human Keratinocytes --- p.146 / Chapter 4.3.1 --- Introduction --- p.146 / Chapter 4.3.2 --- Materials and methods --- p.146 / Chapter 4.3.2.1 --- Chemicals --- p.146 / Chapter 4.3.2.2 --- General cell culture --- p.147 / Chapter 4.3.2.3 --- Cell cycle analysis with PI staining --- p.147 / Chapter 4.3.2.4 --- Detection of apoptosis by flow cytometry --- p.147 / Chapter 4.3.2.5 --- Measurement of the mitochondrial membrane potential (ΔΨm) --- p.148 / Chapter 4.3.2.6 --- Western blot analysis --- p.148 / Chapter 4.3.2.7 --- Statistical analysis --- p.148 / Chapter 4.3.3 --- Results --- p.149 / Chapter 4.3.3.1 --- Induction of sub-G1 phase by celastrol on HaCaT cells --- p.149 / Chapter 4.3.3.2 --- Quantitative analysis of apoptotic cells by Annexin V-PI staining --- p.151 / Chapter 4.3.3.3 --- Alteration of ΔΨm --- p.153 / Chapter 4.3.3.4 --- Activation of caspase family protein --- p.155 / Chapter 4.3.3.5 --- Celastrol regulates the Bcl-2 family members --- p.159 / Chapter 4.3.4 --- Discussion --- p.161 / Chapter 4.4 --- Inhibition of NF-κB Transcription Factor Activation by Celastrol --- p.164 / Chapter 4.4.1 --- Introduction --- p.164 / Chapter 4.4.2 --- Materials and methods --- p.165 / Chapter 4.4.2.1 --- Chemicals --- p.165 / Chapter 4.4.2.2 --- General cell cultrue --- p.165 / Chapter 4.4.2.3 --- Western blot analysis --- p.165 / Chapter 4.4.2.4 --- Detect nuclear p65 by ELISA assay --- p.166 / Chapter 4.4.2.5 --- Statistical analysis --- p.166 / Chapter 4.4.3 --- Results --- p.167 / Chapter 4.4.3.1 --- Celastrol inhibited the NF-κB activation --- p.167 / Chapter 4.4.4 --- Discussion --- p.170 / Chapter 4.5 --- Induction of Terminal Differentiation by Celastrol --- p.173 / Chapter 4.5.1 --- Introduction --- p.173 / Chapter 4.5.2 --- Materials and methods --- p.174 / Chapter 4.5.2.1 --- Chemicals --- p.174 / Chapter 4.5.2.2 --- General cell culture --- p.174 / Chapter 4.5.2.3 --- CE formation assay --- p.174 / Chapter 4.5.2.4 --- Western blot analysis --- p.174 / Chapter 4.5.2.5 --- Statistical analysis --- p.174 / Chapter 4.5.3 --- Results --- p.175 / Chapter 4.5.3.1 --- Regulation of CE formation by celastrol --- p.175 / Chapter 4.5.3.2 --- Modulation of terminal differentiation markers by celastrol --- p.178 / Chapter 4.5.4 --- Discussion --- p.181 / Chapter 4.6 --- General Discussion --- p.183 / Chapter Chapter Five --- In vivo Anti-psoriatic Effects of Topical Preparation of 1-hydroxy-3-methyl-anthraquinone / Chapter 5.1 --- Introduction --- p.187 / Chapter 5.2 --- Material and Methods --- p.191 / Chapter 5.2.1 --- Chemicals --- p.191 / Chapter 5.2.2 --- Formulation of topical preparation containing HMA --- p.191 / Chapter 5.2.3 --- Mouse tail model --- p.192 / Chapter 5.2.4 --- Histopathological evaluation --- p.193 / Chapter 5.2.5 --- Statistical analysis --- p.194 / Chapter 5.3 --- Results --- p.195 / Chapter 5.3.1 --- Body weight profile --- p.195 / Chapter 5.3.2 --- Histological resutls --- p.197 / Chapter 5.4 --- Discussion --- p.201 / Chapter Chapter Six --- General Conclusions and Future Perspectives / Chapter 6.1 --- General Conclusions --- p.205 / Chapter 6.2 --- Future Perspectives --- p.210 / References / References by alphabetical order --- p.213
|
Page generated in 0.057 seconds