31 |
Design of a Wireless LAN Medium Access Controller on the ARM-based PlatformYang, Cheng-Hsien 03 September 2003 (has links)
It is a future trend to include the function of wireless networking in portable electronic devices, such as notebooks, tablet PC, PDA, mobile phone, and other information applicants. IEEE 802.11 is the most popular wireless LAN protocol that defines the functions in the medium access control (MAC) layer and physical layer.
In this thesis, we design and implement a flexible and reusable soft IP (Intellectual Property) for wireless MAC that is compatible with AMBA system and can be used in SOC applications. The wireless MAC supports buffer descriptors, interrupt and DMA. The IP provides an AMBA-compatible interface for the host system bus, and provides a communication interface for the baseband processor in the physical layer.
|
32 |
Medium Access Control in Wireless Networks with Multipacket Reception and QueueingChen, Guan-Mei 26 July 2005 (has links)
In this thesis, we propose the predictive multicast polling scheme for medium access control in wireless networks with multipacket reception capability. We concentrate on the case in which the packet arrival process is general and the maximum queue size is finite but larger than one. We derive both analytical results and simulation results. We use the theory of discrete-time Markov chain to analyze the evolution of the system state. In addition, we propose to use Markov reward processes to calculate the throughput. Furthermore, we obtain the average system size, the packet blocking probability,
and the average packet delay. The proposed analysis approach is applicable no matter whether perfect state information is available to the controller or not. We also use simulation results to justify the usage of the proposed approach. Our study shows that the system performance can be significantly improved with a few additional buffers in the queues. The proposed medium access control scheme can be used in the single-hop wireless local area networks and the multi-hop wireless mesh networks.
|
33 |
Predictive Multicast Polling and Tree Splitting Algorithm in Wireless Access Networks with Multipacket ReceptionChen, Kuan-Mei 23 August 2009 (has links)
In this dissertation, we propose using and analytically evaluate the predictive multicast polling scheme and the tree splitting algorithm for medium access control in interference dominating wireless access networks with random traffic and finite nodes. In an interference dominating wireless network, a receiver could simultaneously receive multiple packets from a variety of transmitters, as long as the signal-to-interference-plus-noise ratio exceeds a predetermined threshold. We concentrate on the case of in which the maximum queue size in a node is finite. We use discrete-time Markov chains, reward processes and regenerative processes to derive the throughput, the packet blocking probability, the average packet delay, and the average system size. We show that the system performance of the predictive multicast polling scheme can be significantly improved with a few additional buffers in the queues. Our study also shows that exact performance of the splitting algorithm depends on the total number of nodes in the networks. We verify our numerical results by rigorous mathematical proof and computer simulations.
|
34 |
Secure and Spectrally-Efficient Channel Access in Multi-Channel Wireless NetworksZhang, Yan January 2015 (has links)
Wireless services have become an indispensable part of our social, economic, and everyday activities. They have facilitated and continue to facilitate rapid access to information and have created a highly-interconnected web of users who are untethered to particular locations. In fact, it is expected that in the very near future, the number of users that access the Internet through their mobile devices will surpass those access the Internet from the fixed infrastructure. Aside from mobile Internet access, wireless technologies enable many critical applications such as emergency response, healthcare and implantable medical devices, industrial automation, tactical communications, transportation networks, smart grids, smart homes, navigation, and weather services. The proliferation and wealth of wireless applications has created a soaring demand for ubiquitous broadband wireless access. This demand is further fueled by the richness of the information accessed by users. Low-bit rate voice communications and text have been replaced with graphics, high-definition video, multi-player gaming, and social networking. Meeting the growing traffic demand poses many challenges due to the spectrum scarcity, the cost of deploying additional infrastructure, and the coexistence of several competing technologies. These challenges can be addressed by developing novel wireless technologies, which can efficiently and securely manage multi-user access to the wireless medium. The multi-user access problem deals with the sharing of the wireless resource among contending users in an efficient, secure, and scalable manner. To alleviate contention and interference among the multiple users, contemporary wireless technologies divide the available spectrum to orthogonal frequency bands (channels). The availability of multiple channels has been demonstrated to substantially improve the performance and reliability of wireless networks by alleviating contention and interference. Multi-channel networks, whether cellular, sensor, mesh, cognitive radio, or heterogeneous ones, can potentially achieve higher throughput and lower delay compared to single-channel networks. However, the gains from the existence of orthogonal channels are contingent upon the efficient and secure coordination of channel access. Typically, this coordination is implemented at the medium access control (MAC) layer using a multi-channel MAC (MMAC) protocol. MMAC protocols are significantly more sophisticated than their single-channel counterparts, due to the additional operations of destination discovery, contention management across channels, and load balancing. A significant body of research has been devoted to designing MMAC protocols. The majority of solutions negotiate channel assignment every few packet transmissions on a default control channel. This design has several critical limitations. First, it incurs significant overhead due to the use of in-band or out-of-band control channels. Second, from a security standpoint, operating over a default control channel constitutes a single point of failure. A DoS attack on the control channel(s) would render all channels inoperable. Moreover, MMAC protocols are vulnerable to misbehavior from malicious users who aim at monopolizing the network resources, or degrading the overall network performance. In this dissertation, we improve the security and spectral efficiency of channel access mechanisms in multi-channel wireless networks. In particular, we are concerned with MAC-layer misbehavior in multi-channel wireless networks. We show that selfish users can manipulate MAC-layer protocol parameters to gain an unfair share of network resources, while remaining undetected. We identify possible misbehavior at the MAC-layer, evaluate their impact on network performance, and develop corresponding detection and mitigation schemes that practically eliminate the misbehavior gains. We extend our misbehavior analysis to MAC protocols specifically designed for opportunistic access in cognitive radio networks. Such protocols implement additional tasks such as cooperative spectrum sensing and spectrum management. We then discuss corresponding countermeasures for detecting and mitigating these misbehavior. We further design a low-overhead multi-channel access protocol that enables the distributed coordination of channel access over orthogonal channels for devices using a single transceiver. Compared with prior art, our protocol eliminates inband and out-of-band control signaling, increases spatial channel reuse, and thus achieves significant higher throughput and lowers delay. Furthermore, we investigate DoS attacks launched against the channel access mechanism. We focus on reactive jamming attacks and show that most MMAC protocols are vulnerable to low-effort jamming due to the utilization of a default control channel. We extend our proposed MMAC protocol to combat jamming by implementing cryptographic interleaving at the PHY-layer, random channel switching, and switching according to cryptographically protected channel priority lists. Our results demonstrate that under high load conditions, the new protocol maintains communications despite the jammer's effort. Extensive simulations and experiments are conducted to evaluate the impact of the considered misbehaviors on network performance, and verify the validity of the proposed mechanisms.
|
35 |
Performance study on a dual prohibition Multiple Access protocol in mobile Ad Hoc and Wireless Mesh networksWu, Qian 03 January 2008 (has links)
Wireless networks are less reliable than wired networks because channels are “exposed” to the surrounding environment that is susceptible to interference and noise. To minimize losses of data due to collisions, wireless networks need a mechanism to regulate the access on the transmission medium. Medium Access Control (MAC) protocols control access to the shared communication medium so that it can be used efficiently.
In this thesis, we first describe the collision-controlled Dual Prohibition Multiple Access (DPMA) protocol [45]. The main mechanisms implemented in DPMA, such as binary dual prohibition, power control, interference control, and support for differentiated services (DiffServ), are presented in detail. We conducted a thorough simulation study on DPMA protocol from several aspects. First, we conduct simulations to observe the effects of binary competition number (BCN), unit slot length and safe margin on the performance of DPMA. Secondly, the DiffServ capability of DPMA is demonstrated through simulation results. Finally, we compare the DPMA protocol with the CSMA/CA protocol and find that DPMA with optimal configuration has better performance than CSMA/CA under both low and high network density. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2007-09-28 16:25:02.515
|
36 |
Energy Efficient Protocols for Delay Tolerant NetworksChoi, Bong Jun January 2011 (has links)
The delay tolerant networks (DTNs) is characterized by frequent disconnections and long delays of links among devices due to mobility, sparse deployment of devices, attacks, and noise, etc. Considerable research efforts have been devoted recently to DTNs enabling communications between network entities with intermittent connectivity. Unfortunately, mobile devices have limited energy capacity, and the fundamental problem is that traditional power-saving mechanisms are designed assuming well connected networks. Due to much larger inter-contact durations than contact durations, devices spend most of their life time in the neighbor discovery, and centralized power-saving strategies are difficult. Consequently, mobile devices consume a significant amount of energy in the neighbor discovery, rather than in infrequent data transfers. Therefore, distributed energy efficient neighbor discovery protocols for DTNs are essential to minimize the degradation of network connectivity and maximize the benefits from mobility.
In this thesis, we develop sleep scheduling protocols in the medium access control (MAC) layer that are adaptive and distributed under different clock synchronization conditions: synchronous, asynchronous, and semi-asynchronous. In addition, we propose a distributed clock synchronization protocol to mitigate the clock synchronization problem in DTNs. Our research accomplishments are briefly outlined as follows:
Firstly, we design an adaptive exponential beacon (AEB) protocol. By exploiting the trend of contact availability, beacon periods are independently adjusted by each device and optimized using the distribution of contact durations. The AEB protocol significantly reduces energy consumption while maintaining comparable packet delivery delay and delivery ratio.
Secondly, we design two asynchronous clock based sleep scheduling (ACDS) protocols. Based on the fact that global clock synchronization is difficult to achieve in general, predetermined patterns of sleep schedules are constructed using hierarchical arrangements of cyclic difference sets such that devices independently selecting different duty cycle lengths are still guaranteed to have overlapping awake intervals with other devices within the communication range.
Thirdly, we design a distributed semi-asynchronous sleep scheduling (DSA) protocol. Although the synchronization error is unavoidable, some level of clock accuracy may be possible for many practical scenarios. The sleep schedules are constructed to guarantee contacts among devices having loosely synchronized clocks, and parameters are optimized using the distribution of synchronization error. We also define conditions for which the proposed semi-asynchronous protocol outperforms existing asynchronous sleep scheduling protocols.
Lastly, we design a distributed clock synchronization (DCS) protocol. The proposed protocol considers asynchronous and long delayed connections when exchanging relative clock information among nodes. As a result, smaller synchronization error achieved by the proposed protocol allows more accurate timing information and renders neighbor discovery more energy efficient.
The designed protocols improve the lifetime of mobile devices in DTNs by means of energy efficient neighbor discoveries that reduce the energy waste caused by idle listening problems.
|
37 |
Throughput Optimization in Multi-hop Wireless Networks with Random AccessUddin, Md. Forkan January 2011 (has links)
This research investigates cross-layer design in multi-hop wireless networks with
random access. Due to the complexity of the problem, we study cross-layer design
with a simple slotted ALOHA medium access control (MAC) protocol without considering any network dynamics. Firstly, we study the optimal joint configuration of routing and MAC parameters in slotted ALOHA based wireless networks under a signal to interference plus noise ratio based physical interference model. We formulate a
joint routing and MAC (JRM) optimization problem under a saturation assumption
to determine the optimal max-min throughput of the flows and the optimal configuration of routing and MAC parameters. The JRM optimization problem is a complex
non-convex problem. We solve it by an iterated optimal search (IOS) technique and
validate our model via simulation. Via numerical and simulation results, we show
that JRM design provides a significant throughput gain over a default configuration
in a slotted ALOHA based wireless network.
Next, we study the optimal joint configuration of routing, MAC, and network
coding in wireless mesh networks using an XOR-like network coding without opportunistic listening. We reformulate the JRM optimization problem to include the
simple network coding and obtain a more complex non-convex problem. Similar to
the JRM problem, we solve it by the IOS technique and validate our model via simulation. Numerical and simulation results for different networks illustrate that (i) the jointly optimized configuration provides a remarkable throughput gain with respect
to a default configuration in a slotted ALOHA system with network coding and (ii)
the throughput gain obtained by the simple network coding is significant, especially
at low transmission power, i.e., the gain obtained by jointly optimizing routing, MAC,
and network coding is significant even when compared to an optimized network without network coding. We then show that, in a mesh network, a significant fraction of
the throughput gain for network coding can be obtained by limiting network coding
to nodes directly adjacent to the gateway.
Next, we propose simple heuristics to configure slotted ALOHA based wireless
networks without and with network coding. These heuristics are extensively evaluated
via simulation and found to be very efficient. We also formulate problems to jointly
configure not only the routing and MAC parameters but also the transmission rate
parameters in multi-rate slotted ALOHA systems without and with network coding.
We compare the performance of multi-rate and single rate systems via numerical
results.
We model the energy consumption in terms of slotted ALOHA system parameters.
We found out that the energy consumption for various cross-layer systems, i.e., single
rate and multi-rate slotted ALOHA systems without and with network coding, are
very close.
|
38 |
Scheduled Medium Access Control in Mobile Ad Hoc NetworksJanuary 2013 (has links)
abstract: The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay and throughput, and sometimes bounding maximum delay. However, they adapt slowly, if at all, to changes in the network. Contention-based schemes are agile, adapting quickly to changes in perceived contention, but suffer from short-term unfairness, large variations in packet delay, and poor performance at high load. The perfect MAC protocol, it seems, embodies the strengths of both contention- and schedule-based approaches while avoiding their weaknesses. This thesis culminates in the design of a Variable-Weight and Adaptive Topology Transparent (VWATT) MAC protocol. The design of VWATT first required answers for two questions: (1) If a node is equipped with schedules of different weights, which weight should it employ? (2) How is the node to compute the desired weight in a network lacking centralized control? The first question is answered by the Topology- and Load-Aware (TLA) allocation which defines target persistences that conform to both network topology and traffic load. Simulations show the TLA allocation to outperform IEEE 802.11, improving on the expectation and variation of delay, throughput, and drop rate. The second question is answered in the design of an Adaptive Topology- and Load-Aware Scheduled (ATLAS) MAC that computes the TLA allocation in a decentralized and adaptive manner. Simulation results show that ATLAS converges quickly on the TLA allocation, supporting highly dynamic networks. With these questions answered, a construction based on transversal designs is given for a variable-weight topology transparent schedule that allows nodes to dynamically and independently select weights to accommodate local topology and traffic load. The schedule maintains a guarantee on maximum delay when the maximum neighbourhood size is not too large. The schedule is integrated with the distributed computation of ATLAS to create VWATT. Simulations indicate that VWATT offers the stable performance characteristics of a scheduled MAC while adapting quickly to changes in topology and traffic load. / Dissertation/Thesis / Ph.D. Computer Science 2013
|
39 |
Smart packet access and call admission control for efficient resource management in advanced wireless networksPhan, V. V. (Vinh V.) 12 April 2005 (has links)
Abstract
Efficient management of rather limited resources, including radio spectrum and mobile-terminal battery power, has been the fundamental design challenge of wireless networks and one of the most widespread research problems over the years. MAC (Medium Access Control) for packet access and CAC (Call Admission Control) for connection-oriented service domains are commonly used as effective tools to manage radio resources, capacity and performance of wireless networks while providing adequate QoS (Quality of Service) to mobile users. Hence, analysis and synthesis of efficient MAC and CAC schemes for advanced wireless networks have significant academic and practical values. This dissertation addresses that topic and presents seven separate contributions of the author: four on adaptive MAC schemes for centralized PRN (Packet Radio Networks), referred to as SPA (Smart Packet Access) and three on CAC schemes for cellular networks, referred to as SCA (Smart Call Admission). These contributions are published in eighteen original papers by the author, which are listed and referred to as Papers I–XVIII in this thesis.
In SPA, the first contribution, reported in Papers II and IV, studies implementation losses of adaptive feedback-control MAC schemes for the uplink of DS-CDMA (Direct-Sequence Code Division Multiple Access) PRN in the presence of various system imperfections. The second contribution, reported in Papers XI, XII, XV and XVI, proposes a bit-rate adaptive MAC scheme for DS-CDMA PRN, referred to as SPR (Smart Packet Rate). The third contribution, reported in Papers III, XIII and XIV, develops two alternative MAC schemes with adaptive packet-length over correlated fading channels in DS-CDMA PRN, referred to as SPL (Smart Packet Length). The fourth contribution, reported in Papers XVII and XVIII, develops alternative adaptive MAC schemes for optimal trade-offs between throughput and energy consumption of TCP (Transmission Control Protocol) applications in advanced cellular networks. These include a so-called SPD (Smart Packet Dispatching) for HSPA (High Speed Packet Access) and, again, SPL for LSPA (Low Speed Packet Access).
Moving on to SCA, the first contribution, reported in Papers V and VII, provides a simple and accurate analytical method for performance evaluation of a class of fixed-assignment CAC schemes with generic guard-channel policy and queuing priority handoffs in cellular networks. The second contribution, reported in Papers VI, IX and X, proposes a simple and effective SCAC (Soft-decision CAC) scheme for CDMA cellular networks. This is evaluated against fixed-assignment and measurement-based CAC schemes with a simple and reliable method provided as a part of the contribution. The third contribution, reported in Papers I and VIII, incorporates alternative QoS differentiation paradigms and resource partitioning into CAC, defines GoS (Grade of Service) for multimedia cellular networks, and provides an in-hand tool for efficient capacity and GoS management.
|
40 |
Sensor Medium Access Control Protocol-Based Epilepsy Patients Monitoring SystemOtoum, Safa January 2015 (has links)
This thesis focuses on using Wireless Sensor Networks (WSNs) for monitoring applications on epilepsy patients (EPs). With the increase of these types of patients and the necessity of continuous daily monitoring and the need for an immediate response to their seizures, the main objective of this thesis is to decrease the response time in order to save them from severe consequences, as well as to make them comfortable with the monitoring procedure. Our proposed Epilepsy Patients Monitoring System (EPMS) consists of five ordinary nodes distributed over the patient’s body, as well as a coordinator node and a receive node. These nodes detect the seizures and forward the data to the coordinator, which, in turn, collects the data and transmits it to the receiver, triggering an alarm concerning the seizure occurrence. We focus on the Medium Access Control (MAC) protocol, using the Sensor Medium Access Control (SMAC) protocol to decrease the generated delay, and the Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA) scheme to prevent collisions that can prolong the response time.
|
Page generated in 0.0319 seconds