• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement of Spine Density in Mouse Models of Hypodopaminergia

Bermejo, Marie Kristel 11 July 2013 (has links)
Dopamine (DA) is a key catecholamine neurotransmitter involved in motor control, cognition, and neuroendocrine regulation. Reduced DA transmission is associated with Parkinson’s disease, depression, and anhedonia. An overexpression of the dopamine transporter in mice (DAT-tg) results in a 40% reduction in extracellular DA, and can be classified as a genetic model of hypodopaminergia. Reserpine treatment depletes extracellular DA, and is a pharmacological model of hypodopaminergia. The aim of this study was to determine morphological and proteomic changes to medium spiny neurons (MSNs), which receive dopaminergic input, as a consequence of reduced DA transmission. To achieve this, MSNs were fluorescently labelled using a diolistics method and immunofluorescence. There were no observable changes to morphology or proteomic profile of MSNs in DAT-tg animals. Reserpine treatment resulted in reduced spine density in MSNs. DAT-tg animals may present a level of DA depletion that is below the threshold to induce morphological changes to MSNs.
2

Measurement of Spine Density in Mouse Models of Hypodopaminergia

Bermejo, Marie Kristel 11 July 2013 (has links)
Dopamine (DA) is a key catecholamine neurotransmitter involved in motor control, cognition, and neuroendocrine regulation. Reduced DA transmission is associated with Parkinson’s disease, depression, and anhedonia. An overexpression of the dopamine transporter in mice (DAT-tg) results in a 40% reduction in extracellular DA, and can be classified as a genetic model of hypodopaminergia. Reserpine treatment depletes extracellular DA, and is a pharmacological model of hypodopaminergia. The aim of this study was to determine morphological and proteomic changes to medium spiny neurons (MSNs), which receive dopaminergic input, as a consequence of reduced DA transmission. To achieve this, MSNs were fluorescently labelled using a diolistics method and immunofluorescence. There were no observable changes to morphology or proteomic profile of MSNs in DAT-tg animals. Reserpine treatment resulted in reduced spine density in MSNs. DAT-tg animals may present a level of DA depletion that is below the threshold to induce morphological changes to MSNs.
3

Die durch exogenes ATP gesteuerte Modulation von exzitatorischen synaptischen Signalen in striatalen Neuronen der Ratte

Tautenhahn, Hans-Michael 27 November 2013 (has links) (PDF)
Untersucht wurde die mögliche Rolle von Adenosin-5´-Triphosphat (ATP) als extrazelluläres Signalmolekül im Neostriatum der Ratte. Zum Einsatz kam die patch-clamp Methode, adaptiert für Ableitungen aus akuten Hirnschnitten. Bereits bekannt war, dass ATP exzitatorische postsynaptische Ströme an GABAergen, striatalen Projektionsneuronen („medium spiny“ Neurone) hemmen konnte. Nun sollten die verantwortlichen Mechanismen hinter diesem Effekt aufgeklärt werden. Es zeigte sich, dass exogen zugeführtes ATP zunächst zu Adenosin metabolisiert werden musste, um seine Wirkung ausüben zu können. Ein Teil dieses Effektes war, vermittelt über präsynaptische Adenosin A1-Rezeptoren, einer Hemmung der striatalen Glutamat-Freisetzung geschuldet. Neu war, dass auch die „medium spiny“ Neurone selbst funktionelle A1-Rezeptoren exprimierten. Aktiviert durch lokal gebildetes Adenosin vermittelten diese eine Hemmung der Leitfähigkeit von Glutamat-Rezeptoren des N-Methyl-D-Aspartat (NMDA) Subtyps. Unter physiologischen Bedingungen mag dieser Mechanismus der Begrenzung der Informationsweiterleitung über die GABAergen Projektionsneurone dienen. Striataler Glutamat-Exzess mit Überaktivierung von NMDA-Rezeptoren ist ein Charakteristikum der Huntington´schen Erkrankung. Eine Adressierung der A1 Rezeptoren als therapeutische Option im Rahmen dieser Basalganglienerkrankung scheint daher prinzipiell möglich.
4

Derivation of enkephalinergic medium spiny neurons from mouse embryonic stem cells

Vatanashevanopakorn, Chinnavuth January 2015 (has links)
Medium spiny neurons (MSNs) play an important role in locomotion. Counterbalance between two MSN subtypes, enkephalin-positive and substance P-positive MSNs, is crucial for maintaining normal movement. Preferential degeneration of enkephalinergic MSNs in early stage Huntington’s disease (HD) contributes to abnormal involuntary movement called chorea. The reasons for this selective vulnerability are unknown. In vitro differentiation of pluripotent stem cells (PSCs) to neuronal cells is considered a potential approach for modelling neurodegenerative disorders including HD. Generation of PSC-derived enkephalinergic MSNs would be an ideal tool for dissecting their preferential degeneration. However, an enkephalinergic phenotype has never been reported in PSC-derived MSNs. We, therefore, have generated a mouse embryonic stem cell (mESC) reporter line that expresses enhanced yellow fluorescent protein (EYFP) when the cells are committed to an enkephalinergic fate. Characterisation of this mESC line via chimaera generation showed that all EYFP-positive cells were also enkephalin-positive. We have then optimised an enkephalinergic neuronal differentiation protocol using this ESC line. Interestingly, we found that a combination of Wnt inhibitor Dickkopf-related protein 1 (DKK1), sonic hedgehog (Shh) and brain-derived neurotrophic factor (BDNF), commonly used in addition to basal medium for deriving MSNs from PSCs, had a detrimental effect on enkephalin expression. Absence of these three factors, surprisingly, did not reduce the potential of ESCs to become MSNs nor did it affect the electrophysiological properties of ESC-derived MSNs. Further investigation revealed that Pre-pro-enkephalin is down-regulated in the presence of exogenous DKK1 and/or Shh but not in the presence of BDNF. We, therefore, propose that addition of exogenous DKK1 and Shh is unfavourable to derive enkephalinergic MSNs from mouse ESCs. These findings could be used to derive enkephalinergic MSNs in vitro allowing the disease in a dish approach for HD modelling.
5

Modeling receptor induced signaling in MSNs : Interaction between molecules involved in striatal synaptic plasticity

Nair, Anu G. January 2014 (has links)
Basal Ganglia are evolutionarily conserved brain nuclei involved in several physiologically important animal behaviors like motor control and reward learning. Striatum, which is the input nuclei of basal ganglia, integrates inputs from several neurons, like cortical and thalamic glutamatergic input and local GABAergic inputs. Several neuromodulators, such as dopamine, accetylcholine and serotonin modulate the functional properties of striatal neurons. Aberrations in the intracellular signaling of these neurons lead to several debilitating neurodegenerative diseases, like Parkinson’s disease. In order to understand these aberrations we should first identify the role of different molecular players in the normal physiology. The long term goal of this research is to understand the molecular mechanisms responsible for the integration of different neuromodulatory signals by striatal medium spiny neurons (MSN). This signal integration is known to play important role in learning. This is manifested via changes in the synaptic weights between different neurons. The group of synpases taken into consideration for the current work is the corticostriatal one, which are synapses between the cortical projection neurons and MSNs. One of the molecular processes of considerable interest is the interaction between dopaminergic and cholinergic inputs. In this thesis I have investigated the interactions between the biochemical cascades triggered by dopaminergic, cholinergic (ACh) and glutamatergic inputs to the striatal MSN. The dopamine induced signaling increases the levels of cAMP in the striatonigral MSNs. The sources of dopamine and acetylcholine are dopaminergic neurons (DAN) from midbrain and tonically active cholinergic interneurons (TAN) of striatum, respectively. A sub-second burst activity in DAN along with a simultaneous pause in TAN is a characteristic effect elicited by a salient stimulus. This, in turn, leads to a dopamine peak and, possibly, an acetylcholine (ACh) dip in striatum. I have looked into the possibility of sensing this ACh dip and the dopamine peak at striatonigral MSNs. These neurons express D1 dopamine receptor (D1R) coupled to Golf and M4 Muscarinic receptor (M4R) coupled to Gi/o . These receptors are expressed significantly in the dendritic spines of these neurons where the Adenylate Cyclase 5 (AC5) is a point of convergence for these two signals. Golf stimulates the production of cAMP by AC5 whereas Gi/o inhibits the Golf mediated cAMP production. I have performed a kinetic-modeling exercise to explore how dopamine and ACh interacts with each other via these receptors and what are the effects on the downstream signaling events. The results of model simulation suggest that the striatonigral MSNs are able to sense the ACh dip via M4R. They integrate the dip with the dopamine peak to activate AC5 synergistically. We also found that the ACh tone may act as a potential noise filter against noisy dopamine signals. The parameters for the G-protein GTPase activity indicate towards an important role of GTPase Activating Proteins (GAPs), like RGS, in this process. Besides this we also hypothesize that M4R may have therapeutic potential. / <p>QC 20140325</p>
6

Die durch exogenes ATP gesteuerte Modulation von exzitatorischen synaptischen Signalen in striatalen Neuronen der Ratte

Tautenhahn, Hans-Michael 26 September 2013 (has links)
Untersucht wurde die mögliche Rolle von Adenosin-5´-Triphosphat (ATP) als extrazelluläres Signalmolekül im Neostriatum der Ratte. Zum Einsatz kam die patch-clamp Methode, adaptiert für Ableitungen aus akuten Hirnschnitten. Bereits bekannt war, dass ATP exzitatorische postsynaptische Ströme an GABAergen, striatalen Projektionsneuronen („medium spiny“ Neurone) hemmen konnte. Nun sollten die verantwortlichen Mechanismen hinter diesem Effekt aufgeklärt werden. Es zeigte sich, dass exogen zugeführtes ATP zunächst zu Adenosin metabolisiert werden musste, um seine Wirkung ausüben zu können. Ein Teil dieses Effektes war, vermittelt über präsynaptische Adenosin A1-Rezeptoren, einer Hemmung der striatalen Glutamat-Freisetzung geschuldet. Neu war, dass auch die „medium spiny“ Neurone selbst funktionelle A1-Rezeptoren exprimierten. Aktiviert durch lokal gebildetes Adenosin vermittelten diese eine Hemmung der Leitfähigkeit von Glutamat-Rezeptoren des N-Methyl-D-Aspartat (NMDA) Subtyps. Unter physiologischen Bedingungen mag dieser Mechanismus der Begrenzung der Informationsweiterleitung über die GABAergen Projektionsneurone dienen. Striataler Glutamat-Exzess mit Überaktivierung von NMDA-Rezeptoren ist ein Charakteristikum der Huntington´schen Erkrankung. Eine Adressierung der A1 Rezeptoren als therapeutische Option im Rahmen dieser Basalganglienerkrankung scheint daher prinzipiell möglich.
7

Differential involvement of striatal medium spiny neurons subpopulations on decision-making processes in mice

Chaves Rodriguez, Elena 03 May 2019 (has links) (PDF)
Decision-making is necessary to adapt to the variable environment in everyday life. During this process, our goal is to select the most beneficial course of action in order to obtain the best outcome, to develop efficient choice strategies. That is, estimating the probability to obtain any of the available outcomes as well as their value. Moreover, poor decision-making ability is a common symptom to several psychiatric disorders, such as pathological gambling, depression, schizophrenia and bipolar disorder.The cognitive and emotional mechanisms controlling decision-making processes depend, among others, on the striatum, Basal Ganglia’s main input nucleus. The striatum is divided into the dorsal striatum, responsible for motor and cognitive control that initiate actions (Dorsomedial Striatum, DMS) and generate habits (Dorsolateral Striatum, DLS), and Nucleus Accumbens (NAc) which manages reward and the influence of motivation on motor behavior. A2A-expressing and D1-expressing medium spiny neurons (iMSNs and dMSNs, respectively), accounting for 95% of striatal neurons act in coordination to generate adaptive behavioral responses. It has been shown that imbalanced activity between these two populations leads to abnormal behaviors: overactivation of striatonigral neurons promotes an increased locomotion as well as a higher sensitivity for reward, whereas overactivation of striatopallidal neurons produces the exact opposite effects. However, the specific contributions to decision-making of these two populations in each striatal territory remains unclear. Here, we made use of a chemogenetic (DREADD) tool to manipulate striatal projection neurons’ activity within each specific striatal area and tested their role in a decision-making operant protocol. To do so, we used two different mouse models that allowed us to target specifically iMSNs (A2A-Cre mice) or dMSNs (D1-Cre mice) and induce neuronal-specific expression of the hM3Dq DREADD receptor. CNO-mediated activation of these receptors led to neuronal activation. Then, we tested DREADD-dependent activation of MSNs during the Iowa Gambling Task (IGT), a test used to assess the influence of different rewards on choice and to evaluate the ability of mice to develop advantageous choice strategies. We found an exclusive role of DMS’ dMSNs in controlling choice preference, as DREADD-induced activation of these neurons produced a loss of preference. Manipulations of MSNs in other striatal areas led to altered task performance without affecting choice preference.These results contribute to a better understanding of the role of the striatum on decision-making and moreover, suggest the existence of a high level of functional specialization in this area, a fact that could be explained by the local circuits in which each MSN population is involved. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
8

Etudes optogénétique et pharmacologique de la connectivité et de la plasticité endocannabinoïde des synapses glutamatergiques du noyau accumbens de souris / Optogenetic and pharmacologic studies of connectivity and endocannabinoid plasticity at glutamatergic synapses in the mouse nucleus accumbens

Deroche, Marion 22 March 2019 (has links)
Le noyau accumbens (NAc) intègre des informations cognitives et affectives. Bien que le rôle du NAc dans les troubles neuropsychiatriques soit bien connu, une compréhension détaillée de ses circuits dans des conditions physiologiques fait défaut. Les neurones moyens épineux (MSNs) du NAc sont des neurones de projection GABAergiques qui expriment des récepteurs D1 ou D2. Ils reçoivent et intègrent des signaux glutamatergiques provenant notamment du cortex préfrontal (PFC), de l'hippocampe ventral (vHipp) et de l'amygdale basolatérale (BLA).Dans cette thèse, nous avons combiné des méthodes optogénétique et électrophysiologique pour dresser un portrait fonctionnel des synapses excitatrices sur les MSNs D1 et D2 dans le NAc de souris adulte. Nous avons observé que les MSNs D1 sont plus excitables que les D2. Ensuite, les propriétés synaptiques de vHipp, de la BLA et du PFC ont révélé une hiérarchie des afférences dépendant de l’identité des MSNs et de l’inhibition «feedforward». Nous avons constaté que la BLA est la voie dominante sur les MSNs D1, tandis que le PFC domine sur les D2. De plus, nous avons testé l’hypothèse que le système endocannabinoïde confère aux circuits excitateurs une plasticité spécifique des voies et des cellules. Ainsi, alors que les récepteurs CB1 dépriment uniformément les voies quelle que soit l’identité des MSNs, les récepteurs TRPV1 contrôlent les afférences de manière bidirectionnelle sur le NAc. Enfin, nous avons clarifié comment l'interaction des récepteurs TRPV1/CB1 façonne la plasticité au niveau des synapses identifiées de BLA-NAc. Ensemble, ces données révèlent un haut degré de spécificité des synapses et du circuit dans le NAc adulte. / The nucleus accumbens (NAc) plays a key role in action selection by integrating cognitive and affective information. The NAc is implicated in numerous neuropsychiatric disorders, however a complete understanding of its circuits and their regulation in physiological conditions is missing. The principal cell type in the NAc, medium-spiny neurons MSNs are GABAergic projection neurons that express either D1 or D2 receptors. They receive and integrate glutamatergic inputs most notably from the prefrontal cortex (PFC), ventral hippocampus (vHipp) and basolateral amygdala (BLA).We combined optogenetic and electrophysiological methods to draw a functional portrait of excitatory disambiguated synapses onto D1 and D2 MSNs in the adult mouse NAc core. We first observed that adult D1- are inherently more excitable than D2-MSNs. Next, the synaptic properties of vHipp, BLA and PFC inputs revealed a hierarchy of synaptic inputs dependent on the identity of the postsynaptic target MSN and on circuit specific feedforward inhibition. We found that the BLA is the dominant excitatory pathway onto D1- while PFC inputs dominate D2-MSNs. Additionally, we tested the hypothesis that the endocannabinoid system endows excitatory circuits with pathway- and cell-specific plasticity. Thus, while CB1 receptors (CB1R) uniformly depress excitatory pathways irrespective of MSNs’ identity, TRPV1 receptors (TRPV1R) bidirectionally control inputs onto the NAc core in a pathway- and cell- specific manner. Finally, we clarified how the interplay of TRPV1R/CB1R shapes plasticity at identified BLA-NAc synapses. Together these data reveal a high degree of synapse and circuit specificity in the adult NAc core.
9

Neural Coding Strategies in Cortico-Striatal Circuits Subserving Interval Timing

Cheng, Ruey-Kuang January 2010 (has links)
<p>Interval timing, defined as timing and time perception in the seconds-to-minutes range, is a higher-order cognitive function that has been shown to be critically dependent upon cortico-striatal circuits in the brain. However, our understanding of how different neuronal subtypes within these circuits cooperate to subserve interval timing remains elusive. The present study was designed to investigate this issue by focusing on the spike waveforms of neurons and their synchronous firing patterns with local field potentials (LFPs) recorded from cortico-striatal circuits while rats were performing two standard interval-timing tasks. Experiment 1 demonstrated that neurons in cortico-striatal circuits can be classified into 4 different clusters based on their distinct spike waveforms and behavioral correlates. These distinct neuronal populations were shown to be differentially involved in timing and reward processing. More importantly, the LFP-spike synchrony data suggested that neurons in 1 particular cluster were putative fast-spiking interneurons (FSIs) in the striatum and these neurons responded to both timing and reward processing. Experiment 2 reported electrophysiological data that were similar with previous findings, but identified a different cluster of striatal neurons - putative tonically-active neurons (TANs), revealed by their distinct spike waveforms and special firing patterns during the acquisition of the task. These firing patterns of FSIs and TANs were in contrast with potential striatal medium-spiny neurons (MSNs) that preferentially responded to temporal processing in the current study. Experiment 3 further investigated the proposal that interval timing is subserved by cortico-striatal circuits by using microstimulation. The findings revealed a stimulation frequency-dependent "stop" or "reset" response pattern in rats receiving microstimulation in either the cortex or the striatum during the performance of the timing task. Taken together, the current findings further support that interval timing is represented in cortico-striatal networks that involve multiple types of interneurons (e.g., FSIs and TANs) functionally connected with the principal projection neurons (i.e., MSNs) in the dorsal striatum. When specific components of these complex networks are electrically stimulated, the ongoing timing processes are temporarily "stopped" or "reset" depending on the properties of the stimulation.</p> / Dissertation
10

Rôle du récepteur orphelin GPR88 dans les pathologies psychiatriques et motrices / Role of the orphan receptor GPR88 in psychiatric and motor disorders

Meirsman, Aura Callia Carole 25 September 2015 (has links)
GPR88 est un récepteur couplé aux protéines G orphelin exprimé principalement au niveau du striatum spécifiquement dans les neurones moyens épineux de la voie striato-nigrale et de la voie striato-pallidale.Premièrement nous avons étudié les souris Gpr88 KO et montré des altérations biochimiques, structurales et comportementales. Aussi les résultats montrent que l’hyperactivité des souris Gpr88 KO est diminuée par l’administration de méthylphénidate. Deuxièmement nous avons montré que la diminution des comportements liés à l’anxiété dépend de GPR88 dans la voie striato-pallidale et que la coordination motrice est régulée par GPR88 dans le striatum adulte (injection AAV-Cre) et dans la voie striato-pallidale. Dernièrement, nous avons confirmé un déficit d’inhibition du prépulse chez les souris Gpr88 KO, mais aussi montré que celui-ci s’étend à la modalité visuelle et n’est pas lié à un déficit général d’inhibition ou à la délétion de Gpr88 dans les neurones striato-pallidaux. / Among brain orphan G protein-coupled receptors, GPR88 shows high expression mainly in the striatum specifically in medium spiny neurons of both the striatonigral and striatopallidal pathwaysFirst, we examine full Gpr88 KO mice and show biochemical, structural and behavioral alterations. Results also show that the hyperactivity phenotype of Gpr88 KO mice is reversed by methylphenidate.Second, we show that Gpr88 in striatopallidal neurons (cKO approach) exerts anxiogénic activity and that motor coordination is regulated by GPR88 in the adult brain (AAV-Cre approach) and in the striatopallidal pathway.Finally, we confirmed previous data showing impaired acoustic prepulse inhibition in Gpr88 KO mice and further show that this deficit is not the result of a general inhibition deficit or of the lack of GPR88 in striatopallidal neurons.

Page generated in 0.0824 seconds