• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 16
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 30
  • 26
  • 24
  • 15
  • 14
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Neuropeptides in the RVM Promote Descending Facilitation and Abnormal Pain

Marshall, Timothy McCoy January 2008 (has links)
The neuropeptides dynorphin and cholecystokinin (CCK), and their associated pronociceptive effects were investigated in the RVM. Utilizing a nerve-injury model (SNL), RT-PCR analysis revealed increases (p<0.05) of prodynorphin mRNA, and bradyinkin, B1- and B2-receptor mRNA, post-SNL, 14-days, 2-days, and 14-days, respectively. Administration of dynorphin into the RVM produced both acute and long-lasting (>30-days) tactile hypersensitivity. Administration of the B1-antagonist, DALBK and the B2-antagonist, Hoe-140, into the RVM significantly attenuated dynorphin-induced tactile hypersensitivity. Nerve-injury induced tactile hypersensitivity was significantly reversed by RVM administration of dynorphin antiserum or the B2-antagonist, Hoe-140. These data suggest that dynorphin is up-regulated in the RVM in nerve-injury, and via the activation of bradykinin receptors in the RVM, produces abnormal pain. Like dynorphin, CCK is up-regulated in the RVM in nerve-injury, with studies suggesting that elevated levels of CCK in the RVM mediate pronociceptive activity through CCK2 receptor activation, resulting in enhanced spinal nociceptive transmission. At present, it is unknown what key neurotransmitters are mediating this RVM CCK-driven effect at the level of the spinal cord. Here, spinal cerebrospinal fluid (CSF) levels of serotonin (5-HT) and prostaglandin E2 (PGE2) were measured in the lumbar spinal cord in naïve rats following CCK administration into the RVM. Following RVM CCK microinjection, an approximate 5-fold increase in spinal (CSF) PGE2 levels was observed, as compared to baseline controls. PGE2 levels showed a progressive increase with peak levels observed at the 80-minute post-CCK injection timepoint, whereas 5-HT levels in the spinal CSF remained unchanged following CCK administration into the RVM. This release of PGE2 coincided with the timecourse for CCK-induced mechanical hypersensitivity. Administration of the CCK2-antagonist YM022 prior to CCK into the RVM, significantly attenuated (>50%) the release of PGE2 in the spinal cord. The non-selective COX-inhibitor naproxen and the 5-HT3 antagonist ondansetron, both administered intrathecally, significantly attenuated RVM CCK-induced hindpaw tactile hypersensitivity. In summary, these data suggest a bradykinin- or CCK2-receptor antagonist could be used alone or in conjunction with current therapies in the treatment of chronic pain.
32

Cholecystokinin Drives Descending Facilitation to Mediate Morphine-Induced Paradoxical "Pain" and Antinociceptive Tolerance

Xie, Jennifer Yanhua January 2005 (has links)
Sustained administration of morphine in humans and in animals induces a state of abnormal pain (i.e., hyperalgesia) which may be associated with the development of reduced analgesic efficacy (i.e., tolerance). Evidence suggests that opiate treatment may upregulate cholecystokinin (CCK), a pronociceptive peptide, in the brain and spinal cord. Therefore, we hypothesized that CCK may be upregulated by opiate treatment in the rostral ventromedial medulla (RVM) and to subsequently drive descending facilitation mechanisms to elicit hyperalgesia and antinociceptive tolerance in rats.CCK administered into the RVM of naive rats elicited hyperalgesia which was blocked by either RVM CCK2 receptor antagonist L365,260; or by bilateral lesion of dorsolateral funiculus, a major bulbospinal descending pain modulation pathway from the RVM to spinal cord.Sustained subcutaneous morphine induced hyperalgesia and spinal antinociceptive tolerance. Both effects were reversed by RVM CCK2 antagonist, suggesting that the up-regulation of the endogenous RVM CCK system played a critical role in the expression of these phenomena.Lesion of cells in the RVM which selectively express CCK2 receptors with a saporin construct (CCK-SAP) to inhibit ribosome activity, prevented morphine-induced hyperalgesia and spinal antinociceptive tolerance. These findings suggest that the integrity of the RVM CCK system is required for the development of hyperalgesia and antinociceptive tolerance induced by sustained morphine.The CCK system does not seem to play a role in setting the baseline sensory thresholds in normal rats because neither RVM L365,260 nor CCK-SAP treatment altered baseline sensory thresholds in naive rats.CCK appears to be present exclusively in nerve terminals of RVM neurons in naive rats. There was no obvious change in the levels of CCK-LI, CCK2 receptor, or CCK2 receptor mRNA in the RVM after sustained morphine treatment. However, microdialysis studies showed an approximately 5-fold increase in basal CCK levels in the RVM after sustained morphine treatment.Taken together, our results support the hypothesis that increased release of CCK in the RVM is induced by sustained morphine and drives descending facilitation to mediate morphine-induced paradoxical "pain" and spinal antinociceptive tolerance.
33

Functional neuroanatomy of tachykinins in brainstem autonomic regulation

Makeham, John Murray January 1997 (has links)
Doctor of Philosophy (PhD) / Little is known about the role that tachykinins, such as substance P and its receptor, the neurokinin-1 receptor, play in the generation of sympathetic nerve activity and the integration within the ventrolateral medulla (VLM) of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The studies described in this thesis investigate these autonomic functions and the role of tachykinins through physiological (response to hypercapnoea, chapter 3), anatomical (neurokinin-1 receptor immunohistochemistry, chapter 4) and microinjection (neurokinin-1 receptor activation and blockade, chapters 5 and 6) experiments. In the first series of experiments (chapter 3) the effects of chemoreceptor activation with hyperoxic hypercapnoea (5%, 10% or 15% CO2 in O2) on splanchnic sympathetic nerve activity and sympathetic reflexes such as the baroreflex and somato-sympathetic reflex were examined in anaesthetized rats. Hypercapnoea resulted in sympatho-excitation in all groups and a small increase in arterial blood pressure in the 10 % CO2 group. Phrenic nerve amplitude and phrenic frequency were also increased, with the frequency adapting back to baseline during the CO2 exposure. Hypercapnoea selectively attenuated (5% CO2) or abolished (10% and 15% CO2) the somato-sympathetic reflex while leaving the baroreflex unaffected. This selective inhibition of the somato-sympathetic reflex while leaving the baroreflex unaffected was also seen following neurokinin-1 receptor activation in the rostral ventrolateral medulla (RVLM) (see below). Microinjection of substance P analogues into the RVLM results in a pressor response, however the anatomical basis for this response is unknown. In the second series of experiments (chapter 4), the distribution of the neurokinin-1 receptor in the RVLM was investigated in relation to catecholaminergic (putative sympatho-excitatory “C1”) and bulbospinal neurons. The neurokinin-1 receptor was demonstrated on a small percentage (5.3%) of C1 neurons, and a small percentage (4.7%) of RVLM C1 neurons also receive close appositions from neurokinin-1 receptor immunoreactive terminals. This provides a mechanism for the pressor response seen with RVLM microinjection of substance P analogues. Neurokinin-1 receptor immunoreactivity was also seen a region overlapping the preBötzinger complex (the putative respiratory rhythm generation region), however at this level a large percentage of these neurons are bulbospinal, contradicting previous work suggesting that the neurokinin-1 receptor is an exclusive anatomical marker for the propriobulbar rhythm generating neurons of the preBötzinger complex. The third series of experiments (chapter 5) investigated the effects of neurokinin-1 receptor activation and blockade in the RVLM on splanchnic sympathetic nerve activity, arterial blood pressure, and autonomic reflexes such as the baroreflex, somato-sympathetic reflex, and sympathetic chemoreflex. Activation of RVLM neurokinin-1 receptors resulted in sympatho-excitation, a pressor response, and abolition of phrenic nerve activity, all of which were blocked by RVLM pre-treatment with a neurokinin-1 receptor antagonist. As seen with hypercapnoea, RVLM neurokinin-1 receptor activation significantly attenuated the somato-sympathetic reflex but did not affect the sympathetic baroreflex. Further, blockade of RVLM neurokinin-1 receptors significantly attenuated the sympathetic chemoreflex, suggesting a role for RVLM substance P release in this pathway. The fourth series of experiments (chapter 6) investigated the role of neurokinin-1 receptors in the RVLM, caudal ventrolateral medulla (CVLM), and nucleus tractus solitarius (NTS) on regional cerebral blood flow (rCBF) and tail blood flow (TBF). Activation of RVLM neurokinin-1 receptors increased rCBF associated with a decrease in cerebral vascular resistance (CVR). Activation of CVLM neurokinin-1 receptors decreased rCBF, however no change in CVR was seen. In the NTS, activation of neurokinin-1 receptors resulted in a biphasic response in both arterial blood pressure and rCBF, but no significant change in CVR. These findings suggest that in the RVLM substance P and the neurokinin-1 receptor play a role in the regulation of cerebral blood flow, and that changes in rCBF evoked in the CVLM and NTS are most likely secondary to changes in arterial blood pressure. Substance P and neurokinin-1 receptors in the RVLM, CVLM and NTS do not appear to play a role in the brainstem regulation of tail blood flow. In the final chapter (chapter 7), a model is proposed for the role of tachykinins in the brainstem integration of the sympathetic baroreflex, sympathetic chemoreflex, cerebral vascular tone, and the sympatho-excitation seen following hypercapnoea. A further model for the somato-sympathetic reflex is proposed, providing a mechanism for the selective inhibition of this reflex seen with hypercapnoea (chapter 3) and RVLM neurokinin-1 receptor activation (chapter 5). In summary, the ventral medulla is essential for the generation of basal sympathetic tone and the integration of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The tachykinin substance P, and its receptor, the neurokinin-1 receptor, have a role to play in many of these vital autonomic functions. This role is predominantly neuromodulatory.
34

An electrophysiological study of the projection from the paraventricular nucleus of hypothalamus to the cardiovascular neurons in the rostral ventrolateral medulla of the rat /

Wong, Tak-pan. January 1994 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1995. / Includes bibliographical references (leaf 84-110).
35

Molecular characterization of animal models of pheochromocytoma

Lai, Edwin W. January 2009 (has links)
Thesis (Ph.D.)--Georgetown University, 2009. / Includes bibliographical references.
36

Elektrophysiologische Charakterisierung und morphologische Darstellung von Neuronen des tecto-bulbären und bulbo-tectalen Systems von lungenlosen Salamandern (Fam. Plethodontidae)

Heimbuch, Jörg. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Bremen.
37

Post- and Presynaptic GABA(B) Receptor Activation in Neonatal Rat Rostral Ventrolateral Medulla Neurons in Vitro

Lin, H. H., Dun, N. J. 21 May 1998 (has links)
Whole-cell patch recordings were made from immature (six- to 12-day- old) rat rostral ventrolateral medulla neurons in brainstem slices. GABA or the specific GABA(B) receptor agonist (-)baclofen (10-50 μM) by superfusion or by pressure ejection induced an outward current or a hyperpolarization, which persisted in a tetrodotoxin (0.3 μM)-containing Krebs' solution in nearly every cell tested. The GABA(B) receptor antagonists 2-hydroxy saclofen (50-200 μM) and CGP 35348 (50-200 μM) dose-dependently suppressed baclofen- currents. Baclofen-currents were suppressed by barium (1 mM) but not by tetraethylammonium (20 mM), low Ca2+ (0.24 mM) solution or in a solution containing the Ca2+ chelator BAPTA-AM (10 μM). The outward current had an estimated reversal potential of -98, -77 and -52 mV in 3.1, 7 and 15 mM [K+](o). Pre-incubation of slices with pertussis toxin (500 μg/ml for 5-7 h) or intracellular dialysis with GDP-β-S (500 μM) markedly reduced baclofen-currents. Baclofen in low concentrations (1-3 μM) that caused slight or no change of holding currents and of inward or outward currents induced by exogenously applied glutamate or glycine/GABA, decreased excitatory and inhibitory postsynaptic currents by an average of 86.5 ± 4.3% and 78.4 ± 2.7%. The GABA(B) antagonist CGP 35348 (100 μM) increased the excitatory postsynaptic currents by an average of 64%, without causing a significant change in holding currents in 10/18 cells tested. Our results indicate the presence of post- and presynaptic GABA(B) receptors in the rostral ventrolateral medulla neurons. Activation of postsynaptic GABA(B) receptors induces an outward K+ current which is barium-sensitive, Ca2+- independent and may be coupled to a pertussis-sensitive G-protein. Activation of presynaptic GABA(B) receptors attenuates excitatory or inhibitory synaptic transmission. More importantly, the observation that CGP 35348 enhanced excitatory synaptic currents implies a removal of tonic activation of presynaptic GABA(B) receptors by endogenously released GABA (disinhibition), supporting the hypothesis that these receptors may have a physiological role in regulating the input and output ratio in a subset of rostral ventrolateral medulla neurons in vivo.
38

MXene supported Iron single-atom catalyst for bio sensing applications

Shetty, Saptami 28 March 2022 (has links)
The adrenal medulla is the inner part of adrenal glands located above each kidney, that produces catecholamines. Neuroblastoma and pheochromocytoma are the most prevalent malignancies of the adrenal medulla. Quantitative diagnosis of urinary catecholamines using HPLC-coupled Mass detectors is the current method for the diagnosis of neuroblastoma and pheochromocytoma. There are two major problems with this approach, (i) Because the catecholamines concentrations have short half-life (10-100 s), a series of urine tests must be performed throughout 24hr, detecting each catecholamine separately, is inconvenient and time-consuming; (ii) mass detectors are expensive, bulky, and require highly skilled personal. Vanillylmandelic (VMA), and homavanillic acid (HVA) are the by-products of catecholamines and are emerging alternative biomarker for catecholamines due to their high stability. Here, we developed a rapid, sensitive, miniaturized, and cheaper sensing platform for simultaneous quantifications of dopamine (DA), VMA, and HVA, with the aid of iron single-atom catalysts (Fe-SACs), based electrochemical sensor. SACs are atomically distributed metal atoms that have a maximum atomic utility rate of nearly 100%, compared to 30% for traditional metal nanoparticles. MXene sheets are employed to stabilize Fe-SACs, where, the exposed lone pairs of MXene serve as sites covalently linking high-energy single Fe atoms. MXene/Fe-SACs were synthesized by treating Ti3C2TxMXene with Iron chloride via freeze-drying followed by annealing. The successful formation of the material was verified by state-of-the-art characterizations. The MXene/Fe-SACs show superior electrocatalytic performance to the commonly used Fe- nanomaterials. Then, it was coated on the electrode surface and used to analyze DA, VMA, and HVA simultaneously via cyclic voltammetry (CV) and square-wave voltammetry (SWV). Under optimized conditions, the MXene/Fe-SACs electrochemical sensor showed detection limits as low as 1 nM and a linear range between 1 nM-100 μM for DA, LOD of 5 nM & linear range of 10 nM-100 μM VMA, and LOD of 10 nM & linear range of 20 nM-100 μM HAV. The method proved successful in detecting biomarkers in (spiked) synthetic urine and human serum. Furthermore, the method was successfully demonstrated in the determination of DA release from PC12 live cells, suggesting the wide practical use of SACs in sensing catecholamines-related metabolites.
39

Phenotypically different cells in the nucleus of the solitary tract expression of group I metabotropic glutamate receptors and activation by baroreflexes /

Austgen, James R. January 2008 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "June 2008" Includes bibliographical references.
40

Inhibition of RVLM synaptic activation at peak hyperthermia reduces visceral sympathetic nerve discharge

Hosking, Kimberley Gowens January 1900 (has links)
Master of Science / Department of Anatomy and Physiology / Michael J. Kenney / Hyperthermia is an environmental stressor that produces marked increases in visceral sympathetic nerve discharge (SND) in young rats. The brainstem in rats contains the essential neural circuitry for mediating visceral sympathetic activation; however, specific brainstem sites involved remain virtually unknown. The rostral ventral lateral medulla (RVLM) is a key central nervous system region involved in the maintenance of basal SND and in mediating sympathetic nerve responses evoked from supraspinal sites. In the present study we tested the hypothesis that inhibition of RVLM synaptic activation at peak hyperthermia (internal body temperature, Tc, increased to 41.5°C) would affect heating-induced visceral sympathetic activation. Experiments were completed in chloralose-urethane anesthetized, baroreceptor-intact and sinoaortic-denervated, 3-6 month-old Sprague-Dawley rats. Bilateral inhibition of RVLM synaptic activation produced by muscimol microinjections (400 and 800 pmol) at 41.5°C resulted in immediate and significant reductions in peak heating-induced renal and splenic sympathoexcitation. Interruption of RVLM synaptic activation and axonal transmission by lidocaine microinjections (40 nmol) at 41.5°C produced significant reductions in hyperthermia-induced sympathetic activation to similar levels produced by RVLM muscimol microinjections. The total amount of SND inhibited by RVLM muscimol and lidocaine microinjections was significantly more during hyperthermia (41.5°C) than normothermia (38°C). These findings demonstrate that maintenance of sympathetic activation at peak hyperthermia is dependent on the integrity of RVLM neural circuits.

Page generated in 0.0276 seconds