• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 15
  • 15
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 202
  • 202
  • 51
  • 47
  • 24
  • 23
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthesis and characterization of microporous silica membranes fabricated through pore size reduction of mesoporous silica membranes using catalyzed atomic layer deposition /

McCool, Benjamin A., January 2004 (has links) (PDF)
Thesis (Ph.D.) in Materials Science--University of Maine, 2004. / Includes vita. Includes bibliographical references (leaves 112-122).
52

Electrokinetic membrane processes

Scattergood, Edgar Morris, January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1966. / Vita. Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
53

On the Generation and Detection of Ultrasonic Plate Waves in Microporous Polymeric Material

Lin, Lin January 2003 (has links) (PDF)
No description available.
54

Synthesis and Characterization of Microporous Silica Membranes Fabricated through Pore Size Reduction of Mesoporous Silica Membranes Using Catalyzed Atomic Layer Deposition

McCool, Benjamin A. January 2004 (has links) (PDF)
No description available.
55

Pressure driven transport of non-wetting fluids in membranes used in composite processing

Amouroux-Berthe, Solange Claire. January 2009 (has links)
Thesis (D.Eng.)--University of Delaware, 2009. / Principal faculty advisor: John W. Gillespie, Dept. of Materials Science. Includes bibliographical references.
56

Polymer-Grafted Nanoparticle Membranes: A Platform for Advanced, Tunable Mixed-Matrix Materials

Bilchak, Connor R. January 2019 (has links)
Polymer-Based membranes play a critical role in several industrially important gas separation processes, e.g., carbon dioxide removal from natural gas. However, an intrinsic trade-off between membrane flux (characterized by its permeability) and selectivity to one gas over the other has limited their effectiveness in practical environments. While some incremental success has been obtained by empirically developing new polymer chemistries, the best hopes for transformative improvements may require novel architectures employing predictive structure/property relationships. In this work, we develop a novel hybrid membrane construct comprised of inorganic nanoparticles grafted with polymer chains to form grafted nanoparticles. We find that the grafting architecture almost exclusively results in enhanced gas transport properties, in contrast with those expected from conventional predictions. These enhancements, found to be a result of elevated diffusion constants, are broadly tunable with the grafted chain length and leads to order of magnitude increases in gas permeability. We conjecture that the grafted polymer chains serve to impart added free volume to the composite material, which manifests itself as enhanced gas diffusion relative to the pure polymer. Indeed, multiple experimental and simulation probes verify this picture, and indicate that the free volume increases are a result of the grafted chains adopting anisotropic conformations to fill space. Building off of this finding, we systematically study the effects of the nanoparticle core size and chain grafting density, and find that both the chain length where the maximum permeability occurs, as well as the extent of the enhancement, varies depending on the relative sizes of the chains and the nanoparticle. A thorough structural analysis of the grafted nanoparticles in dilute solution as well as bulk samples indicate that the relation between the measured polymer brush height and the chain length undergoes a transition at intermediate chain lengths, similar to the observed gas permeability enhancements. Using a simple scaling approach, we show that this transition is related to the crossover from a concentrated polymer brush with higher order scaling to a semi-dilute brush where the chains are more ideal. We hypothesize that this impenetrable concentrated brush phase is the source of the added free volume, and that this effect is diminished when the grafted chains are longer than the transition point and the penetrable, semi-dilute polymer brush begins to dominate gas diffusion. When cast in the framework of free volume theories, this prediction accurately captures the trends in gas diffusion; the result is a unique structure/property relation that can be used to design optimal membrane materials. We expand on these constructs to probe other grafted nanoparticle-based architectures incorporating free polymer chains and advanced chemistries to further manipulate the gas transport properties of these mixed-matrix materials. The addition of free chains with judiciously chosen molecular weights and loadings gives a nearly independent means to tune membrane selectivity, which when combined with the intrinsic permeability increases in the matrix-free grafted nanoparticles results in superior materials that can exceed the current performance Upper Bound. We relate this result to the spacial distribution of the free chains throughout the grafted polymer corona, and how this affects the distribution of the free volume in the material as it selectively cuts off larger gas molecules. We further leverage this universal grafting platform by grafting polymer chains with novel chemistries to design membranes with record-setting selectivities while also increasing permeability by nearly two orders of magnitude. We conclude that grafted nanoparticle constructs allow for precise and predictive control of gas transport properties through a new structure/property relation, and serve as a novel material design platform with the potential to function as high performance gas separation technologies.
57

The effect of uni-axial stretching on microporous phase separation membrane structure and performance

Morehouse, Jason Andrew, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
58

Mechanical characterization of perfluorosulfonic acid (PFSA) ionomer membranes

Kusoglu, Ahmet. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisors: Michael H. Santare and Anette M. Karlsson, Dept. of Mechanical Engineering. Includes bibliographical references.
59

The effect of uni-axial stretching on microporous phase separation membrane structure and performance

Morehouse, Jason Andrew 28 August 2008 (has links)
Not available / text
60

Microporous mixed matrix (ZeoTIPS) membranes

Funk, Caleb Vincent, 1982- 29 August 2008 (has links)
Recent work in the areas of zeolite membranes and mixed matrix membranes have inspired the development of isotropic microporous mixed matrix (ZeoTIPS) membranes, consisting of high-selectivity zeolite particles suspended in a cellular, microporous polymer matrix formed by thermally induced phase separation (TIPS). The particles form nanoporous connections between the cellular voids in the matrix, and can carry out separations independent of the choice of polymer matrix. Existing water purification and gas separation membranes have a variety of drawbacks, including durability, chemical instabilities, cost, flux, and formation difficulty. ZeoTIPS membranes address each of these drawbacks while yielding high selectivity. Included in this work are theoretical predictions of ZeoTIPS membrane performance along with models and experiments designed to gain fundamental knowledge that can be used to develop these membranes. This dissertation discusses how zeolite particles influence the processes of droplet coarsening and pore formation in thermally induced phase separation by disrupting flow fields as well as changing local compositions and viscosities. Additionally, a mathematical model is presented, leading to understanding of the ZeoTIPS formation process. Polymers used in these membranes must have acceptable interactions with the zeolite particles and desired mechanical properties, but must also be able to undergo thermally induced phase separation with a non-hazardous diluent under reasonable processing conditions. Furthermore, processing conditions such as cooling rate are of vast importance in forming ZeoTIPS membranes, but the required conditions can be difficult to obtain. Thus, development of these membranes has required extensive experimental research to determine feasible polymer--diluent systems for forming the microporous matrix and to develop methods of formation. / text

Page generated in 0.0653 seconds