• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organisation nanométrique de composant (nanotubes de carbone) utilisant des membranes verticales d'alumine anodique poreuse

Marquardt, Bernd 17 December 2009 (has links) (PDF)
Cette thèse est dédiée à l'étude des membranes verticales d'Alumine Anodique Poreuse (AAP) et leur application pour l'organisation nanométrique et la fabrication de composants. L'objectif principal a été de développer une méthode d'anodisation d'Al permettant une fabrication réproductible des AAPs qui rend possible la réalisation des nano-structures poreuses complexes et l'organisation de nano-matériaux. La fabrication des AAPs, et donc l'anodisation, a été étudiée profondément à partir de différents substrats sur lesquels une couche d'Al a été déposée au départ. Nous avons pu contrôler précisément la vitesse de fabrication d'AAP. Des AAPs ont été fabriquées utilisant de très forts acides à basse température, ce qui a permis à réaliser des diamètres de pores d'environ 4.2 nm et des densités de pores jusqu'à 7.2*1011cm-². En plus, une méthode unique a été développée pour le traitement de la couche barrière au fond des pores appliquant une décroissance exponentielle de la tension d'anodisation. Cela permet le contrôle et la variation de l'épaisseur de la couche barrière et, en même temps, le contrôle de l'uniformité et de la distribution de cette épaisseur. En se basant sur les résultats fondamentaux concernant la fabrication des AAPs, nous avons pu établir une technique d'électrodéposition dans des AAPs qui permet le dépôt de particules de Ni d'une taille variable (d'environ 10 nm à 2.5 μm) à différentes densités souhaitées dans une gamme de 2.3 109 cm-2 to 7.1 x 1010 cm-2 dans des AAPs avec un diamètre de pores de 40 nm. La croissance des NTCs a été étudiée dans des AAPs aussi bien que sur des surfaces structurées par des AAPs. La variabilité de la densité des particules de catalyseur implique la possibilité de la variation de la densité des NTC. Cela nous a permis la réalisation des échantillons d'émission de champ à partir des NTCs, avec lesquelles on a pu obtenir une émission de champ de 1 mA/cm². Qui plus est, nous avons démontré la faisabilité d'une structure multi-couche poreuse à partir d'une gravure anisotrope utilisant des AAPs comme masque de gravure. Cela pourrait permettre d'envisager de nouveaux composants
2

Conception et élaboration de substrats semiconducteurs nanostructurés : nouvelles applications en nanosciences

Moyen, Eric 09 March 2007 (has links) (PDF)
De nouveaux substrats nano-structurés servant de gabarits pour la croissance et l'étude des nano-objets ont été développées. Les surfaces cristallines peuvent présenter naturellement des motifs réguliers (reconstructions, sur-structures, marches sur des surfaces vicinales...) mais sur des échelles n'excédant pas quelques centaines de nm2. Or certaines mesures physiques et les éventuelles applications nécessitent de grandes aires. De nouvelles techniques ont été développéees afin de créer des surfaces nano-structurées sur de larges échelles, en leur imposant un motif régulier par des procédés parallèles. Les substrats ainsi obtenus ont par la suite été fonctionnalisées et ont pu être utilisés dans diverses applications.<br />Dans le cas des surfaces vicinales de Si(111), les propriétés cristallographiques intrinsèques du silicium permettent d'obtenir des motifs uni-dimensionnels sous forme de paquets de marches très réguliers, parallèles entre eux et équidistants. Ces gabarits sont fonctionnalisés par un dépôt d'or formant des réseaux unidimensionnels de plots de siliciures d'or de taille monodisperse, arrangés selon le motif pré-existant, et séparés par des terrasses riches en silicium. Lors d'un dépôt de cobalt sur de telles surfaces, seuls les plots possèdent des propriétés magnétiques.<br />Dans le cas du carbure de silicium (SiC), des réseaux de plusieurs cm2 de nano-canaux facettés, verticaux et de formes hexagonales sont crées par plusieurs méthodes. Le motif d'une membrane d'alumine poreuse est transféré par gravure ionique réactive sur la surface du SiC. Une érosion sous hydrogène à haute température donne aux pores leur forme facettée finale. Une technique alternative basée sur la réaction catalytique d'un réseau de plots de platine avec de l'hydrogène permet d'obtenir des substrats de SiC poreux à de basses températures d'érosion. Ces réseaux ont des applications potentielles dans le magnétisme et la biologie.
3

Structuration et mise en forme de matériaux moléculaires poreux au sein de membranes d'alumine / Growth of porous molecular materials in thepores of alumina membranes

Gualino-Tamonino, Marion 21 September 2015 (has links)
Cette thèse concerne la mise en forme et la structuration de polymères de coordination poreux (PCP, ou MOFs pour Metal-Organic Frameworks) au sein de membranes d'alumine macroporeuses (Øpores ˜ 200 nm), dont le rôle est double. Obtenus sous forme de cristaux, les MOFs sont fragiles. La membrane constitue d'une part une coque protectrice pour le polymère de coordination impliqué dans le matériau composite. D'autre part, elle fait office de matrice, permettant la fabrication de nanostructures unidimensionnelles (1D), obtenues après élimination sélective de la dite matrice. La fonctionnalisation préalable de la membrane, ainsi que les paramètres opératoires (concentration en réactifs, nombre de cycle de filtration, étape de lavage intermédiaire...) ont été largement étudiés, ce qui a permis d'élaborer avec succès plusieurs composites PCP/membrane. Ainsi, des composites incluant des PCP tels que HKUST-1, ZIF-8, et un matériau à transition de spin Fe(pz)[Ni(CN)4] ont été préparés. Pour le polymère de coordination ZIF-8, des nanofibres 1D ont été isolées avec succès après dissolution de la membrane. Tous les composites et les nano-objets résultants ont été amplement caractérisés en termes de morphologie (MEB, MET, AFM), de composition chimique (Raman, DRX, IR), et de propriétés (magnétiques ou d'adsorption/désorption de gaz). / This thesis aimed at the construction of porous coordination polymer (PCP, or MOFs Metal-Organic Frameworks for) within macroporous alumina membranes (Øpores ˜ 200 nm), whose role is twofold. Obtained as crystals, MOFs are fragile. The membrane firstly provides a protective shell for the coordination polymer embedded in the composite material. Moreover, the membrane acts as a matrix, enabling the elaboration of one-dimensional nanostructures (1D), obtained after selective elimination of the matrix. The functionalization of the membrane, and the experimental parameters (reagents concentration, number of cycles, intermediate washing-step...) have been widely studied. They allowed accessing various PCP/membrane composites. Composites involving HKUST-1, ZIF-8 and Fe(pz)[Ni(CN)4] spin transition MOFs have been prepared. For the coordination polymer ZIF-8, 1D nanofibers have been successfully isolated after dissolution of the membrane. These composites and the resulting nano-objects have been extensively characterized in terms of morphology (SEM, TEM, AFM), chemical composition (Raman, XRD, IR), and properties (magnetic or gas adsorption / desorption).
4

Bio-structuration à l'échelle micro et nanométrique

Massou, Sophie 11 July 2011 (has links)
Les substrats structurés aux échelles micrométriques et nanométriques sont intéressants pour des applications biomédicales, par exemple dans des puces à ADN/protéines, pour la miniaturisation des « lab-on-chip » ou pour préparer des implants permettant le contrôle de l'adhésion de cellules. Dans la dernière décennie des études ont montrées, que les cellules vivantes peuvent détecter la présence de nano-structures sur les substrats sur lesquels elles adhèrent. Bien que ces mécanismes soient étudiés depuis une dizaine d'années, les mécanismes fondamentaux sont encore en cours d'études. Tant pour une étude au niveau fondamental que dans le but d'applications concrètes, il est important de développer des techniques simples pour structurer des substrats sur de grandes surfaces. Nous avons réalisé une nouvelle méthode alliant un faible coût de fabrication et la biocompatibilité pour structurer et biofonctionnaliser des substrats à l'échelle nanométrique en utilisant des membranes d'alumine poreuses comme masque. Les membranes d'alumine poreuses, préparées par électrochimie, sont naturellement organisées en un réseau hexagonal sur une surface de quelques cm². Nous les utilisons comme masque pour la structuration de surfaces. Des trous réguliers sont gravés dans le substrat à travers les membranes d'alumine poreuses. Ce substrat est ensuite utilisée lors d'une application biologique : une bicouche lipidique est déposée sur le substrat structuré pour imiter les hétérogénéités de la membrane cellulaire. La mobilité de la bicouche est étudiée par corrélation de spectroscopie de fluorescence à rayon variable. Une autre série d'expériences est faite en utilisant des membranes d'alumine poreuses comme masque d'évaporation pour créer des réseaux organisés d'îlots d'organo-silanes. Deux molécules sont utilisées elles possèdent soit une fonction amine réactive soit une longue chaîne carbonée inerte. La bio-fonctionnalisation est ensuite effectuée en utilisant la fonction amine pour accrocher un anticorps. Des études sont effectuées en parallèle, sur des substrats bio-fonctionnalisés à l'échelle micrométrique grâce au micro-contact printing. Le but de cette étude est de mettre au point une biochimie de surface permettant le contrôle de l'adhésion de cellules immunitaires, avec le but de transférer ensuite la biochimie à l'échelle nanométrique. / Substrates patterned at the micro-scale and nano-scale are interesting for biomedical applications, for example, in DNA/protein nano-arrays, for miniaturized lab-on-chip applications or for making smart implants that can control adhesion of cells. In the last decade, some studies showed that living cells can detect nano-scale structures on substrates to which they adhere. Although this behaviour has been observed now for over a decade, the fundamental detection mechanism is still under investigation. Both for fundamental studies and for applications, it is important to develop facile techniques to pattern substrates on a large scale. We have realized a novel technique for patterning and bio-functionalizing substrates at the nano-scale using porous anodic alumina membranes as masks. The ordered porous anodic alumina membranes, prepared by classical electro-chemistry, are naturally organized in an hexagonal array over surface area of few square centimeters. Here we use them as mask for surface patterning. To create an array of nano holes, the substrate is dry etched through the alumina pores. In a biologically relevant application, a lipid bilayer is deposited on the patterned substrate to mimic a heterogeneous cell membrane. The mobility of the bilayer is studied by fluorescent correlation spectroscopy. In a different set of experiments, the porous alumina membranes are used as evaporation mask to create an organized array of alkyl-silane islands - either with a short carbon chain and with a reactive amine group or with a long carbon chain and non-reactive. Afterwards, biochemical functionalization is achieved by exploiting the amino-function of the amino-silane to bind an antibody. In parallel, we have started some studies of adhesion on a pattern substrate at micro-scale with immunological cells. The substrate is pattern by micro contact printing and the cell adhesion is observed by RICM. The aim of this studies is to prepare the biochemistry for the immunological cells adhesion, with the aim or transferring this to the nano-scale.

Page generated in 0.078 seconds