• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impacts géographiques de l'éruption de 2010 du volcan Merapi, Java, Indonésie / Geographic impacts of the 2010 Merapi volcano eruption, Java, Indonesia

Picquout, Adrien 29 March 2013 (has links)
Le 26 octobre 2010, le Merapi, volcan le plus peuplé et le plus actif de l'île de Java en Indonésie, est entré en éruption. Depuis plusieurs mois, l'activité du volcan avait crû de manière exponentielle et les scientifiques s'attendaient à une éruption exceptionnelle. Leurs pronostics furent confirmés puisqu'un blast parcourut une distance de 8 km, rasa en partie deux villages évacués, et tua mbah Marijan, le « gardien des clés du volcan » et son entourage, ce qui perturba l'équilibre culturel de la région. Dans les jours suivants, l'activité du volcan continua de s'intensifier et des évacuations massives furent organisées. L'éruption paroxysmale du Merapi eut lieu dans la nuit du 4 au 5 novembre ; alors que plusieurs dizaines de milliers de villageois étaient en train de fuir le volcan, de puissantes coulées pyroclastiques dévastèrent les flancs du volcan, tuant et détruisant tout sur leur passage sur une distance maximale de 17 km. Cette nuit-là, plus de 250 personnes furent tuées et des milliers d'autres blessées. Le secteur agricole subit de lourdes pertes puisque de nombreuses récoltes et un grand nombre de têtes de bétail furent perdus. L'activité touristique de la région connut une réaction en chaîne d'impacts, générée en grande partie par la fermeture de l'aéroport de Yogyakarta. La thèse propose de faire une étude transversale et systémique de ces impacts en analysant comment gouvernement et populations se remettent de cette éruption et s'apprêtent à faire face à une future crise causée par le Merapi. / On October 26th 2010, the Merapi volcano, the most populated and active volcano on the Java Island in Indonesia, began erupting. During several months, the volcano's activity grew exponentially and scientists were expecting an exceptional eruption. Their predictions got confirmed as a blast ran through a distance of 8 km, partially destructed two villages (that got evacuated) and killed mbah Marijan, the « Volcano's keys guardian » and his entourage. As a consequence, the cultural balance of the region got disrupted for a while. In the following days, the volcano's activity kept increasing and mass evacuations were organized. The paroxysmal eruption of Merapi occurred in the night of November 4th to 5th 2010, while tens of thousands of villagers were running away from the volcano. Powerful pyroclastic flows ran down its flanks, killing and destroying everything on their way over a maximum distance of 17 km. During that night, over 250 people were killed and thousands were injured. The agricultural sector suffered from heavy losses as many crops and livestock were lost. The tourism industry in the region experienced a chain reaction of impacts generated by the closure of Yogyakarta airport. The thesis offers to make a transversal and systemic study of these impacts by analyzing how the government and people recovered from the eruption and how they are to face a future crisis caused by the Merapi.
2

Multi-disciplinary study on the hydrogeological behaviour of the Eastern flank of the Merapi Volcano, Central Java, Indonesia / Etude multi-disciplinaire du comportement hydrogéologique du versant Est du volcan Merapi, Java Centre, Indonésie

Selles, Adrien 26 June 2014 (has links)
Les connaissances actuelles sur le comportement hydrogéologique des édifices volcano-détritique sont encore limitées et cela limite la bonne gestion des ressources en eau. Depuis une décennie, sur les flancs du volcan Merapi, à Java Centre, en Indonésie, une pression croissante se fait sur la ressource en eau avec l'intensification des pratiques agricoles irriguées, la croissance de la population et les utilisations industrielles de l'eau. Le manque de connaissances sur les processus du cycle de l'eau par les consommateurs déclenche des conflits d'usage et le partage de l'eau devient une question centrale. Une compréhension plus précise du cycle de l'eau dans sa globalité dans ce genre de contexte est donc un point fondamental qui a besoin d'être amélioré.Ce travail a été axé sur la caractérisation des ressources en eaux souterraines à travers l’étude de la géométrie et des propriétés hydrodynamiques des systèmes aquifères /aquitards multi-couches à l'échelle d’un bassin versant expérimental sur le flanc Est du volcan Merapi. Pour couvrir tous les processus impliqués dans la circulation des eaux souterraines, une approche multi-disciplinaire a été choisi.Une nouvelle approche géologique et géomorphologique a été réalisé afin de caractériser la structure interne et l'architecture de dépôt sur le flanc Est du Merapi. Sur la base de ces résultats, un modèle conceptuel géologique et géomorphologique a été construit et révèle des formations détritiques chenalisées et connectées depuis les hautes altitudes jusqu’aux vallées, créant des chemins préférentiels pour les eaux souterraines.La caractérisation du climat avec l'estimation des termes du bilan hydrique et la description des principaux processus hydrologiques sont décrits par le suivi de deux années hydrologiques (2011-2012 et 2012-2013 ). Le climat tropical de cette région se caractérise par une période de mousson (Novembre à Mai ) et une saison sèche (Juin à Octobre ). Le bilan hydrologique est caractérisé par 40 % des précipitations sont perdus par évapotranspiration, 10 % s'écoulent et la moitié restante s'infiltre à travers l'édifice volcano-détritique et recharge les aquifères multicouches.Le fonctionnement hydrogéologique d'un environnement volcano-détritique complexe a pu être appréhendé à l’aide d’un suivi hydrogéologique, hydrochimique et géochimiques sur les sources et des puits peu profonds. Deux ceintures de sources ont été identifiées: la première est caractérisée par des sources de dépression alignées le long d'une ligne topographique tandis qu'une faille normale est probablement à l'origine de la seconde. L’utilisation de la température de l’eau de source comme traceur de l’altitude de recharge a permis l’identification de plusieurs systèmes aquifères multi-couches. Les propriétés hydrauliques de ces aquifères ont été établi à partir des l'analyses des essais hydrauliques. Le premier système aquifère est situé proche de la surface et possède une faible conductivité hydraulique. En revanche, un second système aquifère a été identifié en profondeur et possède une forte perméabilité. Le traceur “température” met en évidence un effet de mélange entre le premier et le deuxième aquifère au niveau des sources de basses altitudes . Ce phénomène est confirmé par les résultats des analyses isotopiques.L'application d'un modèle numérique couplant la circulation des flux, le transfert de masse ou le transfert de chaleur confirme le modèle conceptuel hydrogéologique et permet de quantifier la ressource en eau. / The current knowledge on the hydrogeological behavior of the volcano-detritic edifices is still sparse and these lacks limit the attempting of water resource management. Since a decade, on the flanks of Merapi volcano, in Central Java, Indonesia, an increasing pressure is done on the water resource with the intensification of the irrigated agriculture practices, the growth of population and the water industrial uses. The lack of knowledge about the water cycle processes by the consumers triggers water use conflicts and the water sharing becomes a central issue. A most accurate understanding of the water cycle in its globality in this kind of context is hence a fundamental point that need to be improved.This work has been focused on the characterization of groundwater resource thought the identification of the extent, the geometry and hydrodynamic properties of the aquifers/aquitards multi-layered system at the experimental catchment scale on the Eastern flank of Merapi volcano. To cover all the processes involved into the groundwater circulation, a multi-disciplinary approach has been chosen.A new geological and geomorphological approach is performed to characterize the internal structure and the deposit architecture on this zone of the Eastern flank of the Merapi. Based on these results, a geological and geomorphological conceptual model has been built and insists on the channelized detritic formations connected from the upper parts to the low lands through the volcanic edifice and that create preferential groundwater path ways.The climate characterization with the estimation of the water balance terms and the description of main hydrological processes are described with the monitoring of two hydrological years (2011-2012 and 2012- 2013). The tropical climate of this region is characterized by seasonal monsoon (November to May) and dry season (June to October). The global water balance can be distributed as follow: 40% of rainfall are lost by evapotranspiration, 10% runs off and the remaining half infiltrates through the volcano-detritic edifice to recharge the multi-layered aquifers.The hydrogeological functioning of a complex volcano-detritic environment is explained through the implementation of hydrogeological, hydrochemical and geochemical monitoring on inventoried springs and wells. Two spring belts are described, the first one is characterized by depression spring along a topographic line while a normal fault is probably at the origin of the second one. The identification of a multi-layered aquifer systems has been done based on the determination of the spring water temperature as a relevant tracers of the recharge elevation and the groundwater circulations. The hydraulic properties of these aquifers have been investigated from the analysis of hydraulic tests. Results show a low permeable aquifer close to the surface with a local recharge while a second aquifer system with high permeability and regional recharge is located deeper. The tracer temperature shows a mixing effect between the first and the second aquifers in the springs at low elevation. This phenomenon is confirmed by the isotope analysis.The application of a coupled numerical model between flow circulation, first mass transfer and second heat transfer confirms the hydrogeological conceptual model of volcano-sedimentary edifice and allows to quantify the water resource.
3

Combination of a pressure source and block movement for ground deformation analysis at Merapi volcano prior to the eruptions in 2006 and 2010 / 2006年及び2010年メラピ火山噴火に先行する地盤変動の圧力源・ブロック移動複合モデルによる解析

Nurnaning, Aisyah 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21330号 / 理博第4426号 / 新制||理||1636(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 井口 正人, 教授 福田 洋一, 教授 大倉 敬宏 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
4

Magmatic water content and its effect on volcano explosivity; an FTIR investigation on the 2006 and 2010 eruption products of Merapi volcano, Indonesia / Magmatisk vattenhalt och dess effekt på vulkanexplosivitet; en FTIR-undersökning av utbrottsprodukterna från utbrotten under 2006 och 2010 av Merapi vulkanen, Indonesien

Seraphine, Nadhirah January 2018 (has links)
One of the most important volatiles in magma is water. In magma, water is incorporated in both the melt and in crystals, including hydrous and nominally anhydrous minerals (NAMs). The purpose of this study is to determine the role of magmatic water content in controlling volcano explosivity especially at Merapi volcano, Indonesia, which is one of the most active volcanoes in the world. Here I apply clinopyroxene from two types of eruption products, lava and ash, to test the magmatic water content in the Merapi 2010 eruption. Both oriented and unoriented crystals were analysed using Fourier-Transformed Infrared (FTIR) spectroscopy to establish the clinopyroxene’s crystal water content. By combining the water content of clinopyroxene and geochemical data obtained from EPMA analysis, the magmatic water content is then estimated by inserting the data into the equation of O’Leary et al. (2010) [lnD= -4.2(60.2)16.5(60.5) VI[Al3+]-1.0(60.2) [Ca2+]]. I also investigated clinopyroxene crystals that were experimentally rehydrated, including four oriented crystals from a Merapi 2010 eruption ash sample annealed at a temperature of 700°C and pressure of 1 atm. Magmatic water contents of Merapi 2010 from rehydration experiments were then compared to the Merapi 2006 magmatic water content which were treated under the same conditions. The results revealed a wide variation between samples and among crystals taken from the same sample. However, oriented samples yielded a smaller variation between minimum and maximum clinopyroxene crystal water content and, overall, ash samples yielded higher water content in clinopyroxene than lava samples. The rehydration experiment significantly amplified clinopyroxene crystal water content by 3 to 7-fold compared to the result without the rehydration procedure. Comparison of data between the 2006 and 2010 Merapi eruptions demonstrates that there was a significant difference in magmatic water contents with the 2010 eruption displaying more than twice as much magmatic water than the 2006 eruption. The result implies that magmatic water plays potentially a crucial role in controlling explosivity of Merapi eruptions. / Indonesien är det land i Världen som har den största befolkningen som lever inom 100 km av en aktiv vulkan. Merapi är en av de mest farliga vulkanerna i Indonesien, som också är en av de mest aktiva vulkanerna i Världen och ligger på ön Java runt 15-25 km från Yogyakarta med en total befolkningstäthet på 1000 personer per kvadratkilometer. Utbrott från Merapi har dödat cirka 5000 personer under de senaste 500 åren. Således är det viktigt att studera hur vulkanen beter sig och orsaken till utbrotten för att kunna vita förebyggande åtgärder för att minska antalet dödsfall eller till och med undvika dödsfall helt. Vulkanutbrott kontrolleras av många faktorer, en av faktorerna är flyktiga ämnen i magman och en av de viktigaste flyktiga ämnen är vatten. Det här projektet syftar till att ta reda på vattnets roll på explosiviteten hos utbrotten genom att undersöka eruptiva produkter från utbrotten av Merapi under 2006 och 2010 med hjälp av Fourier-Transformed Infrared (FTIR) spektroskopi. Experimentet använder normalt vattenfria mineraler (NAMs) så som klinopyroxen men vatten kan införlivas i NAMs genom att binda väte i kristallgitteret under kristalltillväxten. Tidigare studier har visat att vattenhalten i klinopyroxenkristall skulle kunna användas för att beräkna magmatisk vattenhalt och därmed jämföra den magmatiska vattenhalt mellan olika utbrott med olika explosivitet i samma vulkan, vilket kan indikera hur vattenhalten påverkar vulkanutbrotten. Magmatiskt vatteninnehåll beräknat utifrån klinopyroxenvattenhalten visade en variation mellan de undersöka proverna från samma utbrott, varför ytterligare undersökning genom rehydreringsexperiment gjordes genom annealing av proverna vid en temperatur av 700 °C och tryck vid 1 atm. Även om det var variation i magmatisk vattenhalt mellan proverna, så har utbrotten av Merapi under 2010 högre magmatiskt vatteninnehåll än utbrottet under 2006 med 3-7 gånger. Sammantaget har Merapi 2010 utbrottet högre explosivitet och högre magmatisk vattenhalt än 2006 utbrottet, vilket innebär att högre vattenhalt ger högre explosivitet. På detta sätt kontrollerade vattnet vulkanens explosivitet för Merapivulkanen.Nyckelord: Merapi vulkan, NA
5

Processes of Magma-crust Interaction : Insights from Geochemistry and Experimental Petrology

Deegan, Frances M January 2010 (has links)
This work focuses on crustal interaction in magmatic systems, drawing on experimental petrology and elemental and isotope geochemistry. Various magma-chamber processes such as magma-mixing, fractional crystallisation and magma-crust interaction are explored throughout the papers comprising the thesis. Emphasis is placed on gaining insights into the extent of crustal contamination in ocean island magmas from the Canary Islands and the processes of magma-crust interaction observed both in nature and in experiments. This research underscores that the compositions of ocean island magmas, even primitive types which are classically used as probes of the mantle, are susceptible to modification by crustal contamination. The principal mechanisms of contamination identified from work on both Tenerife and Gran Canaria (Canary Islands) are assimilation and partial melting of the pre-existing island edifice and intercalated sediments by newly arriving magma (i.e. “island recycling”). The information that we can gain from studying solidified magma and entrained crustal xenoliths concerning the rates and mechanisms of crustal assimilation is, however, limited. To address this shortcoming, a series of time-variable crustal carbonate assimilation experiments were carried out at magmatic pressure and temperature using natural materials from Merapi volcano, Indonesia. A temporally constrained reaction series of carbonate assimilation in magma has hence been constructed. The experiments were analysed using in-situ techniques to observe the progressive textural, elemental, and isotopic evolution of magma-carbonate interaction. Crucially, carbonate assimilation was found to liberate voluminous crustally-derived CO2 on a timescale of only seconds to minutes in the experiments. This points to the role of rapid crustal degassing in volcanic volatile budgets, and, pertinently, in magnifying hazardous volcanic behaviour. This thesis, therefore, delivers detailed insights into the processes of magma-crust interaction from experiments and geochemistry. The outcomes confirm that crustal processes are significant factors in both, i) ocean island magma genesis, and ii) magma differentiation towards compositions with greater explosive potential which can, in turn, manifest as hazardous volcanism. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 707

Page generated in 0.0489 seconds